Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3368
DC FieldValueLanguage
dc.contributor.authorallFerretti, G.; Dipteris Università di Genovaen
dc.contributor.authorallMassa, M.; Dipteris Università di Genovaen
dc.contributor.authorallSolarino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2007-12-14T15:29:44Zen
dc.date.available2007-12-14T15:29:44Zen
dc.date.issued2005-10en
dc.identifier.urihttp://hdl.handle.net/2122/3368en
dc.description.abstractWith the aim to find a more objective way to detect seismic families, we applied a series of successive steps to constrain the results of a waveform similarity analysis. The evaluation of similarity was carried out on the waveforms recorded in the period 1999–2003 by the stations operating in the Garfagnana area, located in northern Tuscany (Italy). The algorithm is based on the cross-correlation technique applied in a process that overcomes the limit of one order of magnitude between events to be compared through a bridging technique. In practice, if two couples of events (A, B) and (B, C), each exceeding the correlation threshold, share a common quake (B), then all three events are attributed to the same family even if the match between A and C is below a value chosen as a reference for similarity. To avoid any subjective choice of threshold for cross-correlation values, the results from the computation algorithm are submitted to a routine that gives increasing reliability to them if they are confirmed by the three components of the seismogram and if the number of families detected by each station is confirmed by more recordings. This latter constraint is made possible by the geometry of the recording network, with interdistances between stations of the order of 40–50 km. The process finally leads to the recognition of 27 families detected and confirmed by, on average, 3 stations that represent 40% of the recording capabilities. Since the performances of the recording network have been very odd in the past, especially in the early years of operation, the reliability of the detection is much higher, as in most cases the stations that detected the families were the only ones to be effectively recording. The methodology proved to be more efficient than other methods applied in the past; moreover, the results could be probably improved even more if, instead of doing a one-run process, it would be borne as a trial-and-error approach.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries5/ 95 (2005)en
dc.subjectSeismicityen
dc.subjectmultipletsen
dc.subjectseismic familiesen
dc.subjectseismic sequencesen
dc.titleAn Improved Method for the Recognition of Seismic Families: Application to the Garfagnana-Lunigiana Area, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1903-1915en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1785/0120040078en
dc.relation.referencesAki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res. 74, no. 2, 615–631. Aster, R. C., and J. Scott (1993). Comprehensive characterization of waveform similarity in microearthquake data sets, Bull. Seism. Soc. Am. 83, 1307–1314. Camassi, R., and M. Stucchi (1996). NT4.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno (a parametric catalogue of damaging earthquakes in the Italian area). CNRGNDT, Zincotecnica Nuova, 66 pp. Cattaneo, M., P. Augliera, D. Spallarossa, and C. Eva (1997). Reconstruction of a seismogenetic structures by multiples analysis: an example of Western Liguria, Italy, Bull. Seism. Soc. Am. 87, 971–986. Cattaneo, M., P. Augliera, D. Spallarossa, and V. Lanza (1999). A waveform similarity approach to investigate seismicity patterns, Nat. Haz. 19, 123–138. Deichmann, N., and M. Garcia-Fernandez (1992). Rupture geometry from high-precision relative hypocenter location of microearthquake clusters, Geophys. J. Int. 110, 501–517. Ferretti, G., S. Solarino, and E. Eva (2002). Crustal structure of the Lunigiana- Garfagnana area (Tuscany, Italy): seismicity, fault-plane solutions and seismic tomography, Bollettino di Geofisica Teorica ed Applicata 43, no. 3–4, 221–238. Got, J., J. Fre´chet, and F. W. Klein (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea, J. Geophys. Res. 99, 15,375–15,386. Joswig, M. (1995). Automated classification of local earthquake data in the BUG small array, Geophys. J. Int. 120, 262–286. Maurer, H., and N. Deichmann (1995). Microearthquake cluster detection based on waveform similarities, with an application to the western Swiss Alps, Geophys. J. Int. 123, 588–600. Press, W. H., P. B. Flannery, S. A. Teukolsky, and W. T. Wetterling (1988). Numerical recipes in C, in The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K. Rautian, T. G., and V. I. Khalturin (1978). The use of the coda for determination of the earthquake source spectrum, Bull. Seism. Soc. Am. 68, 923–948. Schulte-Theis, H. (1995). Cluster analysis of European seismicity, Cahiers Centre Europ. Geodyn. Seism. 12, 201–224. Schulte-Theis, H., and M. Joswig (1993). Clustering and location of mining induced seismicity in the Ruhr basin by automated master event comparison based on Dynamic Waveform Matching (DWM), Comp. Geosci. 19, 233–242. Sherbaum, F., and J. Wendler (1986). Cross spectral analysis of Swabian Jura (SW Germany) three component microearthquake recordings, J. Geophys. 60, 157–166. Smalley, R. F., J. L. Chatelain, D. L. Turcotte, and R. Pre´vot (1987). A fractal approach to the clustering of the earthquakes: applications to the seismicity of the New Hebrides, Bull. Seism. Soc. Am. 77, 1368– 1381. Solarino, S., G. Ferretti, and C. Eva (2002). Seismicity of Garfagnana- Lunigiana (Tuscany, Italy) as recorded by a network of semi-broadband instruments, J. Seism. 6, 145–152. Solarino, S. (2002). The September 7th, 1920 earthquake in Lunigiana- Garfagnana (Tuscany, Italy): can instrumental data provide a reliable location? in Proceedings of the XXVIII General Assembly of ESC, Genova, Italy, 1–6 September 2002, CD-Rom. Spottiswoode, S. M., and A. M. Milev (1998). The use of waveform similarity to define planes of mining-induced seismic events, Tectonophysics 289, 51–60. Waldhauser, F., and W. Ellsworth (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am. 90, no. 6, 1353–1368. Zhizhin, M. N., A. D. Gvishiani, S. Bottard, B. Mohammadiour, and J. Bonnin (1992). Classification of strong motion waveform from different geological regions using syntactic pattern recognition scheme, in Cahiers Centre Europ. Ge´odyn. Seism. 6, 33–42. Zhizhin, M. N., A. D. Gvishiani, D. Rouland, J. Bonnin, and B. Mohammadioun (1994). Identification of geological region for earthquakes using syntactic pattern recognition of seismograms, Nat. Haz. 10, 139–147.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFerretti, G.en
dc.contributor.authorMassa, M.en
dc.contributor.authorSolarino, S.en
dc.contributor.departmentDipteris Università di Genovaen
dc.contributor.departmentDipteris Università di Genovaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Genova - Genova - Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-0696-2035-
crisitem.author.orcid0000-0002-9577-1347-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
SSA04078.PDFpublished article874.7 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

16
checked on Feb 10, 2021

Page view(s) 50

184
checked on Apr 24, 2024

Download(s)

50
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric