Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3342
DC FieldValueLanguage
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFukuyama, E.; National Research Institute for Earth Science and Disaster Preventionen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-14T14:18:30Zen
dc.date.available2007-12-14T14:18:30Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/3342en
dc.description.abstractWe propose a new source-time function, to be used in kinematic modeling of ground-motion time histories, which is consistent with dynamic propagation of earthquake ruptures and makes feasible the dynamic interpretation of kinematic slip models. This function is derived from a source-time function first proposed by Yoffe (1951), which yields a traction evolution showing a slip-weakening behavior. In order to remove its singularity, we apply a convolution with a triangular function and obtain a regularized source-time function called the regularized Yoffe function. We propose a parameterization of this slip-velocity time function through the final slip, its duration, and the duration of the positive slip acceleration (Tacc). Using this analytical function, we examined the relation between kinematic parameters, such as peak slip velocity and slip duration, and dynamic parameters, such as slip-weakening distance and breakdown-stress drop. The obtained scaling relations are consistent with those proposed by Ohnaka and Yamashita (1989) from laboratory experiments. This shows that the proposed source-time function suitably represents dynamic rupture propagation with finite slip-weakening distances.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries/95 (2005)en
dc.subjectEarthquake dynamics and mechanicsen
dc.subjectEarthquake modelingen
dc.subjectEarthquake parametersen
dc.titleA Kinematic Source-Time Function Compatible with Earthquake Dynamicsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1211–1223en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1785/0120040177en
dc.relation.referencesAndrews, D. J. (1999). Test of two methods for faulting in finite-difference calculations, Bull. Seism. Soc. Am. 89, 931–937. Beresnev, I. A. (2003). Uncertainties in finite-fault slip inversions: to what extent to believe? (A critical review), Bull. Seism. Soc. Am. 93, 2445– 2458. Beroza, G. C., and P. Spudich (1988). Linearized inversion for fault rupture behavior: application to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res. 93, 6275–6296. Bizzarri, A., and M. Cocco (2003). Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res. 108, 2373, doi:10.1029/2002JB002198. Bouchon, M. (1997). The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data, J. Geophys. Res. 102, 11,731–11,744. Bouchon, M., N. Toksoz, H. Karabulut, M.-P. Bouin, M. Dietrich, M. Akter, and M. Edie (2000). Seismic imaging of the 1999 Izumit (Turkey) rupture inferred from the near-fault recordings, Geophys. Res. Lett. 27, 3013–3016. Broberg, K. (1978). On transient sliding motion, Geophys. J. R. Astr. Soc. 52, 397–432. Broberg, K. (1999). Cracks and Fracture, Academic Press, New York. Cocco, M., A. Bizzarri, and E. Tinti (2004). Physical interpretation of the breakdown process using a rate- and state-dependent friction law, Tectonophysics 378, 241–262. Cohee, B. P., and G. C. Beroza (1994). A comparison of two methods for earthquake source inversion using strong motion seismograms, Ann. Geophys. 37, 1515–1538. Cotton, F., and M. Campillo (1995). Frequency domain inversion of strong motions: application to the 1992 Landers earthquake, J. Geophys. Res. 100, 3961–3976. Das, S., and K. Aki (1977). A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. R. Astr. Soc. 50, 643–668. Day, S. (1982). Three-dimensional finite-difference simulation of fault dynamics: rectangular faults with fixed rupture velocity, Bull. Seism. Soc. Am. 72, 705–727. Freund, L. B. (1979). The mechanics of dynamic shear crack propagation, J. Geophys. Res. 84, 2199–2209. Fukuyama, E., and K. Irikura (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method, Bull. Seism. Soc. Am. 76, 1623–1649. Fukuyama, E., and R. Madariaga (1998). Rupture dynamics of a planar fault in a 3D elastic medium: rate- and slip-weakening friction, Bull. Seism. Soc. Am. 88, 1–17. Fukuyama, E., and T. Mikumo (1993). Dynamic rupture analysis: inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake (M 6.5), J. Geophys. Res. 98, 6529–6542. Guatteri, M., P. M. Mai, G. C. Beroza, and J. Boatwright (2003). Strong ground-motion prediction from stochastic–dynamic source models, Bull. Seism. Soc. Am. 93, 301–313. Hartzell, S. H., and T. H. Heaton (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am. 73, 1553–1583. Heaton, T. H. (1990). Evidence for and implication of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter. 64, 1–20. Hisada, Y. (2000). A theoretical omega-square model considering the spatial variation on slip and rupture velocity, Bull. Seism. Soc. Am. 90, 387–400. Hisada, Y. (2001). A theoretical omega-square model considering the spatial variation on slip and rupture velocity. II. Case for a twodimensional source model, Bull. Seism. Soc. Am. 91, 651–666. Ide, S., and M. Takeo (1997). Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res. 102, 27,379–27,391. Kaverina, A., D. Dreger, and E. Price (2002). The combined inversion of seismic and geodetic data for the source process of the 16 October 1999 Mw 7.1 Hector Mine, California, earthquake, Bull. Seism. Soc. Am. 92, 1266–1280. Kostrov, B. V. (1964). Self-similar problems of propagation of shear cracks, J. Appl. Math. Mech. 28, 1077–1087. Liu, P., and R. J. Archuleta (2004). A new nonlinear finite fault inversion with three-dimensional Green’s functions: application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res. 109, 2318, doi:10.1029/2003JB002625. Mikumo, T., K. B. Olsen, E. Fukuyama, and Y. Yagi (2003). Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults, Bull. Seism. Soc. Am. 93, 264–282. Nakamura, H., and T. Miyatake (2000). An approximate expression of slip velocity time functions for simulation of near-field strong ground motion, Zishin (J. Seism. Soc. Jpn.) 53, 1–9 (in Japanese with English abstract). Nielsen, S., and J. M. Carlson (2000). Rupture pulse characterization: selfhealing, self-similar, expanding solutions in a continuum model of fault dynamics, Bull. Seism. Soc. Am. 90, 1480–1497. Nielsen, S., and R. Madariaga (2003). On the self-healing fracture mode, Bull. Seism. Soc. Am. 93, 2375–2388. Ohnaka, M., and T. Yamashita (1989). A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res. 94, 4089– 4104. Piatanesi, A., E. Tinti, M. Cocco, and E. Fukuyama (2004). The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models, Geophys. Res. Lett. 31, L04609, doi: 10.1029/2003GL019225. Sekiguchi, H., and T. Iwata (2002). Rupture process of the 1999 Kocaeli, Turkey, earthquake estimated from strong-motion waveforms, Bull. Seism. Soc. Am. 92, 300–311. Takeo, M. (1987). An inversion method to analyse the rupture process of earthquakes using near-field seismograms, Bull. Seism. Soc. Am. 77, 490–513. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco (2004). Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett. 31, L02611, doi:10.1029/2003GL018811. Wald, D. J., and T. H. Heaton (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seism. Soc. Am. 84, 668–691. Yagi, Y., and M. Kikuchi (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data, Geophys. Res. Lett. 27, 1969– 1972. Yoffe, E. (1951). The moving Griffith crack, Phil. Mag. 42, 739–750. Yoshida, S., and K. Koketsu (1990). Simultaneous inversion of waveform and geodetic data for the rupture process of the 1984 Naganoken- Seibu, Japan, earthquake, Geophys. J. Int. 103, 355–362. Yoshida, S., K. Koketsu, B. Shibazaki, T. Sagiya, T. Kato, and Y. Yoshida (1996). Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth 44, 437–454. Zheng, G., and J. R. Rice (1998). Conditions under which velocity weakening friction allows a self-healing versus a crack-like mode of rupture Bull. Seism. Soc. Am. 88, 1466–1483.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorTinti, E.en
dc.contributor.authorFukuyama, E.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentNational Research Institute for Earth Science and Disaster Preventionen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
BSSATinti2005.pdfPublished paper487.67 kBAdobe PDF
2004177_Tinti.pdfTinti_paper560.6 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

103
checked on Feb 10, 2021

Page view(s) 50

234
checked on Apr 24, 2024

Download(s) 5

1,029
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric