Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3328
DC FieldValueLanguage
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSpudich, P.; U.S. Geological Surveyen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-14T12:20:01Zen
dc.date.available2007-12-14T12:20:01Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/3328en
dc.description.abstractWe estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4e+5 and 2e+7 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal Geophysical Researchen
dc.relation.ispartofseries/110 (2005)en
dc.subjectEarthquake dynamics and mechanicsen
dc.subjectEarthquake modelingen
dc.titleEarthquake fracture energy inferred from kinematic rupture models on extended faultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12303en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1029/2005JB003644en
dc.relation.referencesAndrews, D. J. (1976), Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575– 3582. Andrews, D. J. (1999), Test of two methods for faulting in finite-difference calculations, Bull. Seismol. Soc. Am., 89, 931–937. Andrews, D. J. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307, doi:10.1029/2004JB003191. Archuleta, R. J. (1984), A faulting model for the 1979 Imperial Valley earthquake, J. Geophys. Res., 89, 4559– 4585. Beroza, G. C., and P. Spudich (1988), Linearized inversion for fault rupture behavior; application to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res., 93, 6275–6296. Bizzarri, A., and M. Cocco (2003), Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi:10.1029/2002JB002198. Bouchon, M. (1997), The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data, J. Geophys. Res., 102, 1731–1744. Chester, F., and J. Chester (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199– 221. Chester, J. S., F. M. Chester, and A. K. Kronenberg (2005), Fracture surface energy of the Punchbowl Fault, San Andreas system, Nature, 437, 133– 136. Dalguer, L. A., K. Irikura, W. Zhang, and J. D. Riera (2002), Distribution of dynamic and static stress changes during 2000 Tottori (Japan) earthquake: Brief interpretation of the earthquake sequences; Foreshocks, mainshock and aftershocks, Geophys. Res. Lett., 29(16), 1758, doi:10.1029/ 2001GL014333. Day, S. M., G. Yu, and D. J. Wald (1998), Dynamic stress changes during earthquake rupture, Bull. Seismol. Soc. Am., 88, 512– 522. Favreau, P., and R. J. Archuleta (2003), Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake, Geophys. Res. Lett., 30(5), 1198, doi:10.1029/2002GL015968. Fukuyama, E., and R. Madariaga (1998), Rupture dynamics of a planar fault in a 3-D elastic medium: Rate- and slip-weakening friction, Bull. Seismol. Soc. Am., 88, 1 –17. Guatteri, M., and P. Spudich (2000), What can strong-motion data tell us about slip-weakening fault-friction laws?, Bull. Seismol. Soc. Am., 90, 98– 116. Guatteri, M., P. Spudich, and G. Beroza (2001), Inferring rate and state friction parameters from a rupture model of the 1995 Hygo-ken Nanbu (Kobe) Japan earthquake, J. Geophys. Res., 106, 26,511 – 26,521. Hartzell, S. H., and T. H. Heaton (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73, 1553– 1583. Hernandez, B., F. Cotton, and M. Campillo (1999), Contribution of radar interferometry to a two-step inversion of the kinematic process of the 1992 Landers earthquake, J. Geophys. Res., 104, 13,083– 13,099. Hernandez, B.,M. Cocco, F. Cotton, S. Stramondo, O. Scotti, F. Courboulex, and M. Campillo (2004), Rupture history of the 1997 Umbria Marche (central Italy) main shocks from the inversion of GPS, DinSAR and near field strong motion data, Ann. Geophys., 47, 1355–1376. Husseini, M. I., B. J. Dushan, M. J. Randall, and L. B. Freund (1975), On the fracture energy, Geophys. J. R. Astron. Soc., 43, 367– 385. Ida, Y. (1972), Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796– 3805. Ide, S. (2003), On fracture surface energy of natural earthquakes from viewpoint of seismic observations, Bull. Earthquake Res. Inst., 78, 1– 120. Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102, 27,379– 27,391. Lavalle´e, D., and R. J. Archuleta (2003), Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake, Geophys. Res. Lett., 30(5), 1245, doi:10.1029/2002GL015839. Mai, P. M., and G. C. Beroza (2002), A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res., 107(B11), 2308, doi:10.1029/2001JB000588. Mikumo, T., and T. Miyatake (1995), Heterogeneous distribution of dynamic stress drop and relative fault strength recovered from the results of wave-form inversion–the 1984 Morgan-Hill, California earthquake, Bull. Seismol. Soc. Am., 85, 178–193. Mikumo, T., K. B. Olsen, E. Fukuyama, and Y. Yagi (2003), Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults, Bull. Seismol. Soc. Am., 93, 264– 282. Nielsen, S., and R. Madariaga (2003), On the self-healing fracture mode, Bull. Seismol. Soc. Am., 93, 2375–2388. Olgaard, D. L., and W. F. Brace (1983), The microstructure of gouge from a mining-induced seismic shear zone, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 11 – 19. Peyrat, S., K. Olsen, and R. Madariaga (2001), Dynamic modeling of the 1992 Landers earthquake, J. Geophys. Res., 106, 26,467– 26,482. Piatanesi, A., E. Tinti, M. Cocco, and E. Fukuyama (2004), The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models, Geophys. Res. Lett., 31, L04609, doi:10.1029/2003GL019225. Pulido, N., and K. Irikura (2000), Estimation of dynamic rupture parameters from the radiated seismic energy and apparent stress, Geophys. Res. Lett., 27, 3945– 3948. Quin, H. (1990), Dynamic stress drop and rupture dynamics of the October 15, 1979 Imperial Valley, California, earthquake, Tectonophysics, 175, 93– 117. Rice, J. R., C. G. Sammis, and R. Parsons (2005), Off-fault secondary failure induced by a dynamic slip-pulse, Bull. Seismol. Soc. Am., 95, 109– 134. Sibson, R. H. (2003), Thickness of seismic slip zone, Bull. Seismol. Soc. Am., 93, 1169–1178. Spudich, P. (1992), On the inference of absolute stress levels from seismic radiation, Tectonophysics, 211, 99–106. Spudich, P., and M. Guatteri (2004), The effect of bandwidth limitations on the inference of earthquake slip-weakening distance from seismograms, Bull. Seismol. Soc. Am., 94, 2028– 2036. Spudich, P., M. Guatteri, K. Otsuki, and J. Minagawa (1998), Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-ken Nanbu (Kobe) earthquake, Bull. Seismol. Soc. Am., 88, 413–427. Wald, D. J. (1996), Slip history of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismic, and geodetic data, J. Phys. Earth, 44(5), 489– 503. Wald, D. J., and T. H. Heaton (1994), Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seismol. Soc. Am., 84, 668–691. Wald, D. J., T. H. Heaton, and K. W. Hudnut (1996), The slip history of the 1994 Northridge, California, earthquake determined from strong-motion,teleseismic, GPS, and leveling data, Bull. Seismol. Soc. Am., 86, Part B Suppl., 49– 70. Wilson, B., T. Dewers, Z. Reches, and J. N. Brune (2005), Particle size and energetics of gouge from earthquake rupture zones, Nature, 434, 749– 752. Zhang, W., T. Iwata, K. Irikura, H. Sekiguchi, and M. Bouchon (2003), Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B5), 2232, doi:10.1029/2002JB001889.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTinti, E.en
dc.contributor.authorSpudich, P.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentU.S. Geological Surveyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUSGS, Menlo Park, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
JGRTinti2005.pdfPublished paper9.3 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

119
checked on Feb 10, 2021

Page view(s)

176
checked on Apr 20, 2024

Download(s)

28
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric