Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3325
DC FieldValueLanguage
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBizzarri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-14T12:15:11Zen
dc.date.available2007-12-14T12:15:11Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/3325en
dc.description.abstractWe model the dynamic propagation of a 2-D in-plane crack obeying to either slip weakening (SW) or rate- and state-dependent friction laws (R&S). We compare the value of slip weakening distance (Dc), adopted or estimated from the traction versus slip curves, with the critical slip distance measured as the slip at the time of peak slip velocity (Dc'). The adopted friction law and the constitutive parameters control the slip acceleration as well as the timing and the amplitude of peak slip velocity. Our simulations with R&S show that the direct effect of friction and the friction behavior at high slip rates affect the timing of peak slip velocity and thus control the ratio Dc' /Dc. The difference observed in this study between the Dc values and the inferred Dc' can range between few percent up to 50%.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGEOPHYSICAL RESEARCH LETTERSen
dc.relation.ispartofseries/31 (2004)en
dc.subjectModelingen
dc.subjectEarthquake dynamics and mechanicsen
dc.subjectEarthquake parametersen
dc.titleEstimates of slip weakening distance for different dynamic rupture modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL02611en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2003GL018811en
dc.relation.referencesAndrews, D. J. (1973), A numerical study of tectonic stress release by underground explosions, Bull. Seismol. Soc. Am., 63, 1375– 1391. Andrews, D. J. (1976), Rupture velocity of plane strain shear crack, J. Geophys. Res., 81, 5679– 5687. Bizzarri, A., and M. Cocco (2003), Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi:10/1029/2002JB002198. Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi (2001), Solving the dynamic rupture problem with different approaches and constitutive laws, Geophys. J. Int., 144, 656– 678. Cocco, M., and A. Bizzarri (2002), On the slip-weakening behavior of rateand state dependent constitutive laws, Geophys. Res. Lett., 29(11), 1516, doi:10.1029/2001GL013999. Das, S., and K. Aki (1977), A numerical study of two-dimensional spontaneous rupture propagation, Geophys. J. R. Astron. Soc., 50, 643– 668. Day, S. M. (1982), Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity, Bull. Seismol. Soc. Am., 72, 705–727. Dieterich, J. H. (1979), Modeling of rock friction - 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161– 2168. Fukuyama, E., and R. Madariaga (1998), Rupture dynamics of a planar fault in a 3-D elastic medium: Rate- and slip-weakening friction, Bull. Seismol. Soc. Am., 88, 1 –17. Fukuyama, E., T. Mikumo, and K. B. Olsen (2003), Estimation of the critical slip-weakening distance: Theoretical background, Bull. Seismol. Soc. Am., 93, 1835– 1840. Guatteri, M., and P. Spudich (2000), What can strong-motion data tell us about slip-weakening fault-friction laws?, Bull. Seismol. Soc. Am., 90(1), 98– 116. Ida, Y. (1972), Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796– 3805. Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102(B12), 27,379– 27,392. Mikumo, T., K. B. Olsen, E. Fukuyama, and Y. Yagi (2003), Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults, Bull. Seismol. Soc. Am., 93, 264– 282. Ohnaka, M. (2003), A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108(B2), 2080, doi:10.1029/2002JB00123. Ohnaka, M., Y. Kuwahara, and K. Yamamoto (1987), Constitutive relations between dynamic physical parameters near a tip of the propagation slip zone during stick-slip shear failure, Tectonophysics, 144, 109– 125. Okubo, P. G., and J. H. Dieterich (1984), Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817– 5827. Olsen, K. B., R. Madariaga, and R. J. Archuleta (1997), Three-dimensional dynamic simulation of the 1992 Landers earthquake, Science, 278, 834– 838. Perrin, G., J. R. Rice, and G. Zheng (1995), Self-healing slip pulse on a frictional surface, J. Mech. Phys. Solids, 43, 1461– 1495. Weeks, J. (1993), Constitutive laws for high-velocity frictional sliding and their influence on stress drop during unstable slip, J. Geophys. Res., 98(B10), 17,637– 17,648. Zhang, W., T. Iwata, K. Irikura, H. Sekiguchi, and M. Bouchon (2003), Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B5), 2232, doi:10.1029/2002JB001889.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTinti, E.en
dc.contributor.authorBizzarri, A.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0001-8313-4124-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Tintietal_2004_online.pdfPublished paper265.18 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

29
checked on Feb 10, 2021

Page view(s) 50

181
checked on Apr 17, 2024

Download(s)

22
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric