Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3317
DC FieldValueLanguage
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFukuyama, E.; National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japanen
dc.date.accessioned2007-12-14T12:01:52Zen
dc.date.available2007-12-14T12:01:52Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/3317en
dc.description.abstractWe compute the temporal evolution of traction by solving the elasto-dynamic equation and by using the slip velocity history as a boundary condition on the fault plane. We use different source time functions to derive a suite of kinematic source models to image the spatial distribution of dynamic and breakdown stress drop, strength excess and critical slip weakening distance (Dc). Our results show that the source time functions, adopted in kinematic source models, affect the inferred dynamic parameters. The critical slip weakening distance, characterizing the constitutive relation, ranges between 30% and 80% of the total slip. The ratio between Dc and total slip depends on the adopted source time functions and, in these applications, is nearly constant over the fault. We propose that source time functions compatible with earthquake dynamics should be used to infer the traction time history.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/ 31 (2004)en
dc.subjectEarthquake dynamics and mechanicsen
dc.subjectEarthquake parametersen
dc.subjectTheory and modelingen
dc.titleThe dependence of traction evolution on the earthquake source time function adopted in kinematic rupture modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL04609en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2003GL019225en
dc.relation.referencesAndrews, D. J. (1999), Test of two methods for faulting in finite-difference calculations, Bull. Seismol. Soc. Am., 89(4), 931–937. Bouchon, M., M. Campillo, and F. Cotton (1998), Stress field associated with the rupture of the 1992 Landers, California, earthquake and its implications concerning the fault strength at the onset of the earthquake, J. Geophys. Res., 103(B9), 21,091– 21,097. Cocco, M., and A. Bizzarri (2002), On the slip-weakening behaviour of rate- and state dependent constitutive laws, Geophys. Res. Lett., 29(11), 1516, doi:10.1029/2001GL013999. Cotton, F., and M. Campillo (1995), Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake, J. Geophys. Res., 100(B3), 3961– 3975. Dalguer, L. A., K. Irikura, W. Zhang, and J. D. Riera (2002), Distribution of dynamic and static stress changes during 2000 Tottori (Japan) earthquake: Brief interpretation of the earthquake sequences; foreshocks, mainshock and aftershocks, Geophys. Res. Lett., 29(16), 1758, doi:10.1029/2001GL014333. Day, S. M., G. Yu, and D. J. Wald (1998), Dynamic stress changes during earthquake rupture, Bull. Seismol. Soc. Am., 88(2), 512– 522. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo (2003), Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence, Bull. Seismol Soc. Am., 93(4), 1468–1478. Guatteri, M., and P. Spudich (2000), What can strong-motion data tell us about slip-weakening fault-friction laws?, Bull. Seismol. Soc. Am., 90(1), 98– 116. Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102(B12), 27,379– 27,391. Iwata, T., and H. Sekiguchi (2001), Inferences of earthquake rupture process from strong-motion records, presented at the Symposium from Strong-Motion Network. Mikumo, T., and T. Miyatake (1995), Heterogeneous distribution of dynamic stress drop and relative fault strength recovered from the results of wave-form inversion-the 1984 Morgan-Hill, California earthquake, Bull. Seismol. Soc. Am., 85(1), 178– 193. Nielsen, S., and R. Madariaga (2003), On the self-healing fracture mode, Bull. Seismol. Soc. Am., 93(6), 2375– 2388. Ohnaka, M., and T. Yamashita (1989), A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94(B4), 4089– 4104. Okubo, P. G., and J. H. Dieterich (1984), Effect of physical fault properties on friction instabilities produced on simaulated faults, J. Geophys. Res., 89, 5817– 5827. Peyrat, S., K. Olsen, and R. Madariaga (2001), Dynamic modeling of the Landers earthquake, J. Geophys. Res., 106(B11), 26,467– 26,482. Pulido, N., and K. Irikura (2000), Estimation of dynamic rupture parameters from the radiated seismic energy and apparent stress, Geophys. Res. Lett., 27(23), 3945–3948. Spudich, P., and L. Xu (2002), Software for calculating earthquake ground motions from finite faults in vertically varying media, CD accompanying International Handbook of Earthq. and Eng. Seismol., V.2. Zhang, W., T. Iwata, K. Irikura, H. Sekiguchi, and M. Bouchon (2003), Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B5), 2232, doi:10.1029/2002JB001889.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorTinti, E.en
dc.contributor.authorCocco, M.en
dc.contributor.authorFukuyama, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentNational Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptNational Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Piatanesi_etal2004_published.pdfPublished paper385.93 kBAdobe PDF
piatanesietal_2004.pdfPiatanesietal2004_paper339.05 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

31
checked on Feb 10, 2021

Page view(s) 50

200
checked on Apr 24, 2024

Download(s) 50

242
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric