Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3252
DC FieldValueLanguage
dc.contributor.authorallQuareni, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPiochi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-12-14T07:40:49Zen
dc.date.available2007-12-14T07:40:49Zen
dc.date.issued2007-03-01en
dc.identifier.urihttp://hdl.handle.net/2122/3252en
dc.description.abstractThe last eruptive event at Mount Vesuvius occurred in 1944 A.D., ending a cycle of continuous eruptive activity started with the sub-Plinian event of 1631 A.D. The aim of this research is (1) to model the thermal evolution of the volcanic system from 1631 A.D. up to the present and (2) to investigate the possible process leading the volcano to the current state of quiescence. A finite element software is employed to solve the time-dependent energy equation and obtain the thermal field in the volcanic edifice and the surrounding medium. Volcanological, petrological, and geophysical constraints are used to define the crustal structure beneath the volcanic edifice, the magma supply system active since 1631 A.D., and the physico-chemical conditions of magma. Thermodynamic properties of magma and wall rocks have been evaluated from well-established thermo-chemical compilations and data from the literature. It is shown that heat transfer due to magma degassing is required in addition to the heat conduction in order to obtain transient depth-temperature fields consistent with geochemical observations, high crustal magnetization, and rigid behavior of the shallow crust as indicated by geophysical data. Surface data of carbon dioxide soil flux coming out from the Mount Vesuvius crater are taken to constrain such an additional heat flux. The agreement between modeled and measured temperatures at the crater since 1944 A.D. proves the consistency of the model. It is concluded that the present state of quiescence of Mount Vesuvius is mostly a consequence of the absence of magma supply from the deep reservoir into the shallower system. This allows the cooling of residual magma left within the volcanic conduit and the transition from continuous eruptive activity to the condition of conduit obstruction. In this scenario, the hydrothermal system may have developed subsequent to the cooling of the magma within the conduit. Our findings are a direct consequence of the high concentration of CO2 in the most mafic Vesuvian magmas: The low solubility of CO2, with respect to H2O, enables a high mass flux of carbon dioxide through the volcanic edifice. The results of this study are relevant for hazard assessment at Vesuvius and indicate directions for further investigation, such as the role of the hydrothermal system on the thermal energy budget of the volcanic system and its relationships with fluids released by crustal structures likely to host the magmatic reservoir. In general, the role of the high concentration of carbon dioxide in magmas should be more questioned and investigated when studying the behavior of volcanic systems, particularly in south Italy volcanoes.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Union.en
dc.relation.ispartofJournal Geophysical Researchen
dc.relation.ispartofseries/112 ( 2007)en
dc.subjectthe thermal stateen
dc.subjectMount Vesuvius from 1631en
dc.subjectCO2 degassingen
dc.subject1944 A.D. eruptionen
dc.titleModeling of the thermal state of Mount Vesuvius from 1631 A.D. to present and the role of CO2 degassing on the volcanic conduit closure after the 1944 A.D. eruptionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB03202en
dc.identifier.URLhttp://hdl.handle.net/2122/2133en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transporten
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.identifier.doi10.1029/2005JB003841en
dc.relation.referencesAnderson, D. L. (1989), Theory of the Earth, 366 pp., Blackwell Sci., Malden, Mass. Arno` , V., c. Principe, M. Rosi, R. Santacroce, A. Sbrana, and M. F. Sheridan (1987), Somma Vesuvius—Eruptive history, in Somma- Vesuvius, edited by R. Santacroce, Quad. Ric. Sci., 114, 53– 103. Arrighi, S., C. Principe, and M. Rosi (2001), Violent Strombolian and subplinian eruptions at Vesuvius during post-1631 activity, Bull. Volcanol., 63, 126–150. Auger, M., P. Gasparini, J. Virieux, and A. Zollo (2001), Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science, 294, 1510– 1512. Ayuso, R. A., B. De Vivo, G. Rolandi, R. R. Seal II, and A. Paone (1998), Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy, J. Volcanol. Geotherm. Res., 82, 53– 78. Barberi, F., and L. Leoni (1980), Metamorphic carbonate ejecta from Vesuvius Plinian eruptions: Evidence of the occurrence of shallow magma chambers, Bull. Volcanol., 43, 108–120. Barberi, F., H. Bizouard, R. Clocchiatti, N. Metrich, R. Santacroce, and A. Sbrana (1981), The Somma-Vesuvius magma chamber: A petrological and volcanological approach, Bull. Volcanol., 44, 295–315. Barin, I., O. Knacke, and O. Kubaschewsky (1977), Thermochemical Properties of Inorganic Substances, 861 pp., Springer, New York. Beccaluva, L., P. Di Girolamo, and G. Serri (1991), Petrogenesis and tectonic setting of Roman Volcanic Province, Italy, Lithos, 26, 191–221. Belkin, H. E., and B. De Vivo (1993), Fluid inclusion studies of ejected nodules from Plinian eruptions of Mt. Somma–Vesuvius, J. Volcanol. Geotherm. Res., 58, 98– 100. Belkin, H. E., B. De Vivo, E. Roedder, and M. Cortini (1985), Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules, Am. Mineral., 70, 288– 303. Belkin, H. E., B. De Vivo, K. Torok, and J. D. Webster (1998), Pre-eruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas (pre-A. D. 1631), J. Volcanol. Geotherm. Res., 82, 79– 95. Bianco, F., M. Castellano, E. Del Pezzo, and J. M. Ibanez (1999a), Attenuation of short period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int., 138, 67– 76. Bianco, F., M. Castellano, G. Milano, G. Vilardo, F. Ferrucci, and S. Gresta (1999b), The seismic crises at Mt. Vesuvius during 1995 and 1996, Phys. Chem. Earth, 24(111 – 112), 977– 983. Blank, J. G., and R. A. Brooker (1994), Experimental studies of carbon dioxide in silicate melts; solubility, speciation, and stable carbon isotope behavior, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 157– 186, Mineral. Soc. of Am., Washington, D. C. Brocchini, D., C. Principe, D. Castradori, M. A. Laurenzi, and L. Gorla (2001), Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: Insights from the Trecase 1 well, Mineral. Petrol., 73, 67– 91. Bruno, P. P., G. Cippitelli, and A. Rapolla (1998), Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius, Italy, J. Volcanol. Geotherm. Res., 84, 311 –322. Capuano, P., P. Gasparini, A. Zollo, J. Virieux, R. Casale, and M. Yeroyanni (2003), The Internal Structure of Mt. Vesuvius. A Seismic Tomography Investigations, 595 pp., Liguori, Naples, Italy. Chiodini, G., L. Marini, and M. Russo (2001), Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy, Geochim. Cosmochim. Acta, 65, 2129–2147. Cioni, R. (2000), Volatile content and degassing processes in the A.D. 79 magma chamber at Vesuvius (Italy), Contrib. Mineral. Petrol., 140, 40– 54. Cioni, R., L. Civetta, P. Marianelli, N. Metrich, R. Santacroce, and A. Sbrana (1995), Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: The A.D. 79 Plinian eruption of Vesuvius, J. Petrol., 36, 739–776. Cioni, R., P. Marianelli, and R. Santacroce (1998), Thermal and compositional evolution of the shallow magma chambers of Vesuvius, evidence from pyroxene phenocrysts and melt inclusions, J. Geophys. Res., 103(18), 277–18, 294. Civetta, L., and R. Santacroce (1992), Steady state magma supply in the last 3400 years of Vesuvius activity, Acta Vulcanol., 2, 147–159. Civetta, L., R. Galati, and R. Santacroce (1991), Magma mixing and convective compositional layering within the Vesuvius magma chamber, Bull. Volcanol., 53, 287– 300. Civetta, L., M. D’Antonio, S. de Lorenzo, V. Di Renzo, and P. Gasparini (2004), Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius, J. Volcanol. Geotherm. Res., 133, 1 – 12. Corrado, G., and A. Rapolla (1981), The gravity field of Italy: Analysis of spectral composition and delineation of a tridimensional crustal model of central-southern Italy, Boll. Geofis. Teor. Appl., 89, 17– 29. Cortini, M., and O. D. Hermes (1981), Sr isotopic evidence for a multi source origin of the potassic magmas in the Neapolitan area (south Italy), Contrib. Mineral. Petrol., 77, 47– 55. D’Argenio, B., T. Pescatore, and P. Scandone (1973), Schema Geologico dell’Appennino Meridionale (Campania e Lucania), paper presented at Moderne Vedute Della Geologia dell’Appennino, Accad. Naz. dei Lincei, Rome. Figure A1. Heat capacity as a function of temperature for the carbonatic basement, the volcanic rock, and the melt phase. A.D. D’Argenio, B., F. Ortolani, and T. Pescatore (1987), Geology of southern Apennines: A brief outline, paper presented at International Symposium Engineering of Geological Problems in Seismic Areas, Int. Assoc. of Eng. Geol., Bari, Italy. De Gori, P., G. B. Cimini, C. Chiarabba, G. De Natale, C. Troise, and A. Deschamps (2001), Telesismic tomography of the Campanian volcanic area and surrounding Apennic belt, J. Volcanol. Geotherm. Res., 109, 52–75. Del Moro, A., P. Fulignati, P. Marianelli, and A. Sbrana (2001), Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geotherm. Res., 112, 15–24. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration magnitude uncertainty due to seismic noise: Inferences on the temporal pattern of G-R b-value at Mt. Vesuvius, Italy, Bull. Seismol. Soc. Am., 93(4), 1847– 1853. De Natale, G., P. Capuano, C. Troise, and A. Zollo (1998), A seismicity at Somma-Vesuvius and its implications for the 3-D tomography of volcano, J. Volcanol. Geotherm. Res., 82, 175–197. De Natale, G., S. M. Petrazzuoli, C. Troise, F. Pingue, and P. Capuano (2000), Internal stress at Mt. Vesuvius: A model for background seismicity at central volcano, J. Geophys. Res., 105(B7), 16,207 – 16,214. De Natale, G., C. Troise, F. Pingue, P. De Gori, and C. Chiarabba (2001), Structure and dynamics of the Somma-Vesuvius volcanic complex, Mineral. Petrol., 73(1– 3), 5 –22. De Natale, G., I. Kuznetzov, T. Kronrod, A. Peresan, A. Sarao` , C. Troise, and G. F. Panza (2004a), Three decades of seismic activity at Mt. Vesuvius: 1972–2000, Pure Appl. Geophys., 161, 123–144. De Natale, G., C. Troise, R. Trigila, D. Dolfi, and C. Chiarabba (2004b), Seismicity and 3 –D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth Planet. Sci. Lett., 221, 181–196. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238. Di Stefano, R., and C. Chiarabba (2002), Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Doglioni, C. (1991), A proposal for kinematic modeling of W-dipping subductions: Possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 426– 434. Duschenes, J., K. E. Louden, and M. C. Sinha (1986), A seismic refraction experiment in the Thyrrhenian Sea, Geophys. G. R. Astron. Soc., 85, 139–160. Federico, C., A. Aiuppa, P. Allard, S. Bellomo, P. Jean-Baptiste, F. Parello, and M. Valenza (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963–981. Fedi, M., G. Florio, and A. Rapolla (1998), 2.5D modelling of Somma- Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res., 82, 239–247. Ferrucci, F., G. Gaudiosi, N. A. Pino, G. Luongo, A. Hirn, and L. Mirabile (1989), Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, southern Italy), Geophys. Res. Lett., 16(11), 1317–1320. Finetti, I., and C. Morelli (1974), Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli, Boll. Geofis. Teor. Appl., 16, 175–222. Frondini, F., G. Chiodini, S. Caliro, S. Cardellini, and D. Granieri (2004), Diffuse CO2 soil degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642– 651, doi:10.1007/s00445-004-0346-x. Fulignati, P., P. Marianelli, and A. Sbrana (1998), New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol., 10(1), 47–54. Graham, D. W., P. Allard, C. R. J. Kilburn, F. J. Spera, and J. E. Lupton (1993), Helium isotopes in some historical lavas from Mount Vesuvius, J. Volcanol. Geotherm. Res., 58, 359–366. Gueguen, E., C. Doglioni, and M. Fernandez (1997), Lithospheric boudinage in the western Mediterranean back-arc basin, Terra Nova, 9(4), 184–187. Helgeson, H. C., J. Delany, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 1– 229. Henry, D. J., A. Navrotsky, and H. D. Zimmermann (1982), Thermodynamics of plagioclase-melt equilibria in the system albite-anorthitediopside, Geochim. Cosmochim. Acta, 46, 381– 391. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C. Imbo` , G. (1947), Considerazioni e Osservazioni comprovanti che l’eruzione del 1944 fu terminale, Boll. Soc. Nat. Napoli, 56, 1 –13. Ippolito, F., B. D’Argenio, T. Pescatore, and P. Scandone (1975), Structuralstratigraphic units and tectonic framework of southern Apennines, in Geology of Italy, edited by C. Squyres, pp. 11, Lybian Soc. of Earth Sci., Tripoli, Libya Arab Republic. Judd, W. R., Y. S. Touloukian, and R. S. Roy (1989), CINDAS Data Series on Material Properties, vol. II-2, Physical Properties of Rocks and Minerals, 548 pp., Taylor and Francis, Philadelphia, Pa. Judenherc, S., and A. Zollo (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876. Lanari, R., G. De Natale, P. Berardino, E. Sansosti, G. P. Ricciardi, S. Borgstrom, P. Capuano, F. Pingue, and C. Troise (2002), Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano, Geophys. Res. Lett., 29(9), 1292, doi:10.1029/2001GL014571. Lima, A., L. V. Danyushevsky, B. De Vivo, and L. Fedele (2003), A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, edited by B. De Vivo and R. J. Bodnar, pp. 227–249, Elsevier, New York. Marianelli, P., N. Me´trich, R. Santacroce, and A. Sbrana (1995), Mafic magma batches at Vesuvius: A glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petrol., 120, 159– 169. Marianelli, P., N. Me´trich, and A. Sbrana (1999), Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol., 61, 48–63. Navrotsky, A. (1995), Energetics of silicate melts, in Structure, Dynamics and Properties of Silicate Melts, Rev. Mineral., vol. 32, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, pp. 121–143, Mineral. Soc. of Am., Washington, D. C. Ottonello, G. (1991), Principi di Geochimica, 708 pp., Zanichelli, Bologna, Italy. Papale, P. (1997), Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids, Contrib. Mineral. Petrol., 126, 237–251. Papale, P. (1999), Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492. Papale, P. (2002), Thermodynamics of multicomponent fluid-liquid equilibrium in silicate liquids, and applications to magma degassing and ascent dynamics, in Proceedings of the Arezzo Seminar on Fluids Geochemistry, edited by A. Buccianti et al., pp. 121– 137, Pacini, Pisa, Italy. Pappalardo, L., M. Piochi, M. D’Antonio, L. Civetta, and R. Petrini (2002), Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol., 43(7), 1415–1434. Parascandola, A. (1959), Notizie Vesuviane: Il Vesuvio dal marzo 1948 al dicembre 1958, Boll. Soc. Nat. Napoli, 68, 1– 184. Parascandola, A. (1960), Notizie Vesuviane: Il Vesuvio dal gennaio 1959 al dicembre 1960, Boll. Soc. Nat. Napoli, 69, 263–298. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105. Peccerillo, A., and P. Manetti (1985), The potassic alkaline volcanism of central southern Italy: A review of the data relevant to petrogenesis and geodinamic significance, Trans. Geol. Soc. S. Afr., 88, 379–394. Piochi, M., L. Pappalardo, and G. De Astis (2004), Geochemical and isotopical variation within the Campanian Comagmatic Province: Implications on magma source composition, Ann. Geophys., 47, 1485– 1499. Piochi, M., R. A. Ayuso, B. De Vivo, and R. Somma (2006), Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303– 329. Quareni, F., and F. Mulargia (1993), Modeling the closure of a volcanic conduit with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Richet, P., and Y. Bottinga (1985), Heat capacity of aluminum-free silicates, Geochim. Cosmochim. Acta, 49, 471–486. Rolandi, G., A. M. Barrella, and A. Borrelli (1993), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., P. Petrosino, and J. McGeehin (1998), The interplinian activity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geotherm. Res., 82, 19– 52. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151– 182. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199– 203. A.D.D’Argenio, B., F. Ortolani, and T. Pescatore (1987), Geology of southern Apennines: A brief outline, paper presented at International Symposium Engineering of Geological Problems in Seismic Areas, Int. Assoc. of Eng. Geol., Bari, Italy. De Gori, P., G. B. Cimini, C. Chiarabba, G. De Natale, C. Troise, and A. Deschamps (2001), Telesismic tomography of the Campanian volcanic area and surrounding Apennic belt, J. Volcanol. Geotherm. Res., 109, 52–75. Del Moro, A., P. Fulignati, P. Marianelli, and A. Sbrana (2001), Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geotherm. Res., 112, 15–24. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration magnitude uncertainty due to seismic noise: Inferences on the temporal pattern of G-R b-value at Mt. Vesuvius, Italy, Bull. Seismol. Soc. Am., 93(4), 1847– 1853. De Natale, G., P. Capuano, C. Troise, and A. Zollo (1998), A seismicity at Somma-Vesuvius and its implications for the 3-D tomography of volcano, J. Volcanol. Geotherm. Res., 82, 175–197. De Natale, G., S. M. Petrazzuoli, C. Troise, F. Pingue, and P. Capuano (2000), Internal stress at Mt. Vesuvius: A model for background seismicity at central volcano, J. Geophys. Res., 105(B7), 16,207 – 16,214. De Natale, G., C. Troise, F. Pingue, P. De Gori, and C. Chiarabba (2001), Structure and dynamics of the Somma-Vesuvius volcanic complex, Mineral. Petrol., 73(1– 3), 5 –22. De Natale, G., I. Kuznetzov, T. Kronrod, A. Peresan, A. Sarao` , C. Troise, and G. F. Panza (2004a), Three decades of seismic activity at Mt. Vesuvius: 1972–2000, Pure Appl. Geophys., 161, 123–144. De Natale, G., C. Troise, R. Trigila, D. Dolfi, and C. Chiarabba (2004b), Seismicity and 3 –D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth Planet. Sci. Lett., 221, 181–196. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238. Di Stefano, R., and C. Chiarabba (2002), Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Doglioni, C. (1991), A proposal for kinematic modeling of W-dipping subductions: Possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 426– 434. Duschenes, J., K. E. Louden, and M. C. Sinha (1986), A seismic refraction experiment in the Thyrrhenian Sea, Geophys. G. R. Astron. Soc., 85, 139–160. Federico, C., A. Aiuppa, P. Allard, S. Bellomo, P. Jean-Baptiste, F. Parello, and M. Valenza (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963–981. Fedi, M., G. Florio, and A. Rapolla (1998), 2.5D modelling of Somma- Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res., 82, 239–247. Ferrucci, F., G. Gaudiosi, N. A. Pino, G. Luongo, A. Hirn, and L. Mirabile (1989), Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, southern Italy), Geophys. Res. Lett., 16(11), 1317–1320. Finetti, I., and C. Morelli (1974), Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli, Boll. Geofis. Teor. Appl., 16, 175–222. Frondini, F., G. Chiodini, S. Caliro, S. Cardellini, and D. Granieri (2004), Diffuse CO2 soil degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642– 651, doi:10.1007/s00445-004-0346-x. Fulignati, P., P. Marianelli, and A. Sbrana (1998), New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol., 10(1), 47–54. Graham, D. W., P. Allard, C. R. J. Kilburn, F. J. Spera, and J. E. Lupton (1993), Helium isotopes in some historical lavas from Mount Vesuvius, J. Volcanol. Geotherm. Res., 58, 359–366. Gueguen, E., C. Doglioni, and M. Fernandez (1997), Lithospheric boudinage in the western Mediterranean back-arc basin, Terra Nova, 9(4), 184–187. Helgeson, H. C., J. Delany, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 1– 229. Henry, D. J., A. Navrotsky, and H. D. Zimmermann (1982), Thermodynamics of plagioclase-melt equilibria in the system albite-anorthitediopside, Geochim. Cosmochim. Acta, 46, 381– 391. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C. Imbo` , G. (1947), Considerazioni e Osservazioni comprovanti che l’eruzione del 1944 fu terminale, Boll. Soc. Nat. Napoli, 56, 1 –13. Ippolito, F., B. D’Argenio, T. Pescatore, and P. Scandone (1975), Structuralstratigraphic units and tectonic framework of southern Apennines, in Geology of Italy, edited by C. Squyres, pp. 11, Lybian Soc. of Earth Sci., Tripoli, Libya Arab Republic. Judd, W. R., Y. S. Touloukian, and R. S. Roy (1989), CINDAS Data Series on Material Properties, vol. II-2, Physical Properties of Rocks and Minerals, 548 pp., Taylor and Francis, Philadelphia, Pa. Judenherc, S., and A. Zollo (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876. Lanari, R., G. De Natale, P. Berardino, E. Sansosti, G. P. Ricciardi, S. Borgstrom, P. Capuano, F. Pingue, and C. Troise (2002), Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano, Geophys. Res. Lett., 29(9), 1292, doi:10.1029/2001GL014571. Lima, A., L. V. Danyushevsky, B. De Vivo, and L. Fedele (2003), A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, edited by B. De Vivo and R. J. Bodnar, pp. 227–249, Elsevier, New York. Marianelli, P., N. Me´trich, R. Santacroce, and A. Sbrana (1995), Mafic magma batches at Vesuvius: A glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petrol., 120, 159– 169. Marianelli, P., N. Me´trich, and A. Sbrana (1999), Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol., 61, 48–63. Navrotsky, A. (1995), Energetics of silicate melts, in Structure, Dynamics and Properties of Silicate Melts, Rev. Mineral., vol. 32, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, pp. 121–143, Mineral. Soc. of Am., Washington, D. C. Ottonello, G. (1991), Principi di Geochimica, 708 pp., Zanichelli, Bologna, Italy. Papale, P. (1997), Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids, Contrib. Mineral. Petrol., 126, 237–251. Papale, P. (1999), Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492. Papale, P. (2002), Thermodynamics of multicomponent fluid-liquid equilibrium in silicate liquids, and applications to magma degassing and ascent dynamics, in Proceedings of the Arezzo Seminar on Fluids Geochemistry, edited by A. Buccianti et al., pp. 121– 137, Pacini, Pisa, Italy. Pappalardo, L., M. Piochi, M. D’Antonio, L. Civetta, and R. Petrini (2002), Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol., 43(7), 1415–1434. Parascandola, A. (1959), Notizie Vesuviane: Il Vesuvio dal marzo 1948 al dicembre 1958, Boll. Soc. Nat. Napoli, 68, 1– 184. Parascandola, A. (1960), Notizie Vesuviane: Il Vesuvio dal gennaio 1959 al dicembre 1960, Boll. Soc. Nat. Napoli, 69, 263–298. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105. Peccerillo, A., and P. Manetti (1985), The potassic alkaline volcanism of central southern Italy: A review of the data relevant to petrogenesis and geodinamic significance, Trans. Geol. Soc. S. Afr., 88, 379–394. Piochi, M., L. Pappalardo, and G. De Astis (2004), Geochemical and isotopical variation within the Campanian Comagmatic Province: Implications on magma source composition, Ann. Geophys., 47, 1485– 1499. Piochi, M., R. A. Ayuso, B. De Vivo, and R. Somma (2006), Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303– 329. Quareni, F., and F. Mulargia (1993), Modeling the closure of a volcanic conduit with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Richet, P., and Y. Bottinga (1985), Heat capacity of aluminum-free silicates, Geochim. Cosmochim. Acta, 49, 471–486. Rolandi, G., A. M. Barrella, and A. Borrelli (1993), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., P. Petrosino, and J. McGeehin (1998), The interplinian activity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geotherm. Res., 82, 19– 52. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151– 182. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199– 203. B03202 QUARENI ET AL.: MOUNT VESUVIUS THERMAL STATE FROM 1631 A.D.D’Argenio, B., F. Ortolani, and T. Pescatore (1987), Geology of southern Apennines: A brief outline, paper presented at International Symposium Engineering of Geological Problems in Seismic Areas, Int. Assoc. of Eng. Geol., Bari, Italy. De Gori, P., G. B. Cimini, C. Chiarabba, G. De Natale, C. Troise, and A. Deschamps (2001), Telesismic tomography of the Campanian volcanic area and surrounding Apennic belt, J. Volcanol. Geotherm. Res., 109, 52–75. Del Moro, A., P. Fulignati, P. Marianelli, and A. Sbrana (2001), Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geotherm. Res., 112, 15–24. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration magnitude uncertainty due to seismic noise: Inferences on the temporal pattern of G-R b-value at Mt. Vesuvius, Italy, Bull. Seismol. Soc. Am., 93(4), 1847– 1853. De Natale, G., P. Capuano, C. Troise, and A. Zollo (1998), A seismicity at Somma-Vesuvius and its implications for the 3-D tomography of volcano, J. Volcanol. Geotherm. Res., 82, 175–197. De Natale, G., S. M. Petrazzuoli, C. Troise, F. Pingue, and P. Capuano (2000), Internal stress at Mt. Vesuvius: A model for background seismicity at central volcano, J. Geophys. Res., 105(B7), 16,207 – 16,214. De Natale, G., C. Troise, F. Pingue, P. De Gori, and C. Chiarabba (2001), Structure and dynamics of the Somma-Vesuvius volcanic complex, Mineral. Petrol., 73(1– 3), 5 –22. De Natale, G., I. Kuznetzov, T. Kronrod, A. Peresan, A. Sarao` , C. Troise, and G. F. Panza (2004a), Three decades of seismic activity at Mt. Vesuvius: 1972–2000, Pure Appl. Geophys., 161, 123–144. De Natale, G., C. Troise, R. Trigila, D. Dolfi, and C. Chiarabba (2004b), Seismicity and 3 –D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth Planet. Sci. Lett., 221, 181–196. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238. Di Stefano, R., and C. Chiarabba (2002), Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Doglioni, C. (1991), A proposal for kinematic modeling of W-dipping subductions: Possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 426– 434. Duschenes, J., K. E. Louden, and M. C. Sinha (1986), A seismic refraction experiment in the Thyrrhenian Sea, Geophys. G. R. Astron. Soc., 85, 139–160. Federico, C., A. Aiuppa, P. Allard, S. Bellomo, P. Jean-Baptiste, F. Parello, and M. Valenza (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963–981. Fedi, M., G. Florio, and A. Rapolla (1998), 2.5D modelling of Somma- Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res., 82, 239–247. Ferrucci, F., G. Gaudiosi, N. A. Pino, G. Luongo, A. Hirn, and L. Mirabile (1989), Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, southern Italy), Geophys. Res. Lett., 16(11), 1317–1320. Finetti, I., and C. Morelli (1974), Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli, Boll. Geofis. Teor. Appl., 16, 175–222. Frondini, F., G. Chiodini, S. Caliro, S. Cardellini, and D. Granieri (2004), Diffuse CO2 soil degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642– 651, doi:10.1007/s00445-004-0346-x. Fulignati, P., P. Marianelli, and A. Sbrana (1998), New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol., 10(1), 47–54. Graham, D. W., P. Allard, C. R. J. Kilburn, F. J. Spera, and J. E. Lupton (1993), Helium isotopes in some historical lavas from Mount Vesuvius, J. Volcanol. Geotherm. Res., 58, 359–366. Gueguen, E., C. Doglioni, and M. Fernandez (1997), Lithospheric boudinage in the western Mediterranean back-arc basin, Terra Nova, 9(4), 184–187. Helgeson, H. C., J. Delany, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 1– 229. Henry, D. J., A. Navrotsky, and H. D. Zimmermann (1982), Thermodynamics of plagioclase-melt equilibria in the system albite-anorthitediopside, Geochim. Cosmochim. Acta, 46, 381– 391. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C. Imbo` , G. (1947), Considerazioni e Osservazioni comprovanti che l’eruzione del 1944 fu terminale, Boll. Soc. Nat. Napoli, 56, 1 –13. Ippolito, F., B. D’Argenio, T. Pescatore, and P. Scandone (1975), Structuralstratigraphic units and tectonic framework of southern Apennines, in Geology of Italy, edited by C. Squyres, pp. 11, Lybian Soc. of Earth Sci., Tripoli, Libya Arab Republic. Judd, W. R., Y. S. Touloukian, and R. S. Roy (1989), CINDAS Data Series on Material Properties, vol. II-2, Physical Properties of Rocks and Minerals, 548 pp., Taylor and Francis, Philadelphia, Pa. Judenherc, S., and A. Zollo (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876. Lanari, R., G. De Natale, P. Berardino, E. Sansosti, G. P. Ricciardi, S. Borgstrom, P. Capuano, F. Pingue, and C. Troise (2002), Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano, Geophys. Res. Lett., 29(9), 1292, doi:10.1029/2001GL014571. Lima, A., L. V. Danyushevsky, B. De Vivo, and L. Fedele (2003), A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, edited by B. De Vivo and R. J. Bodnar, pp. 227–249, Elsevier, New York. Marianelli, P., N. Me´trich, R. Santacroce, and A. Sbrana (1995), Mafic magma batches at Vesuvius: A glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petrol., 120, 159– 169. Marianelli, P., N. Me´trich, and A. Sbrana (1999), Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol., 61, 48–63. Navrotsky, A. (1995), Energetics of silicate melts, in Structure, Dynamics and Properties of Silicate Melts, Rev. Mineral., vol. 32, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, pp. 121–143, Mineral. Soc. of Am., Washington, D. C. Ottonello, G. (1991), Principi di Geochimica, 708 pp., Zanichelli, Bologna, Italy. Papale, P. (1997), Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids, Contrib. Mineral. Petrol., 126, 237–251. Papale, P. (1999), Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492. Papale, P. (2002), Thermodynamics of multicomponent fluid-liquid equilibrium in silicate liquids, and applications to magma degassing and ascent dynamics, in Proceedings of the Arezzo Seminar on Fluids Geochemistry, edited by A. Buccianti et al., pp. 121– 137, Pacini, Pisa, Italy. Pappalardo, L., M. Piochi, M. D’Antonio, L. Civetta, and R. Petrini (2002), Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol., 43(7), 1415–1434. Parascandola, A. (1959), Notizie Vesuviane: Il Vesuvio dal marzo 1948 al dicembre 1958, Boll. Soc. Nat. Napoli, 68, 1– 184. Parascandola, A. (1960), Notizie Vesuviane: Il Vesuvio dal gennaio 1959 al dicembre 1960, Boll. Soc. Nat. Napoli, 69, 263–298. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105. Peccerillo, A., and P. Manetti (1985), The potassic alkaline volcanism of central southern Italy: A review of the data relevant to petrogenesis and geodinamic significance, Trans. Geol. Soc. S. Afr., 88, 379–394. Piochi, M., L. Pappalardo, and G. De Astis (2004), Geochemical and isotopical variation within the Campanian Comagmatic Province: Implications on magma source composition, Ann. Geophys., 47, 1485– 1499. Piochi, M., R. A. Ayuso, B. De Vivo, and R. Somma (2006), Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303– 329. Quareni, F., and F. Mulargia (1993), Modeling the closure of a volcanic conduit with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Richet, P., and Y. Bottinga (1985), Heat capacity of aluminum-free silicates, Geochim. Cosmochim. Acta, 49, 471–486. Rolandi, G., A. M. Barrella, and A. Borrelli (1993), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., P. Petrosino, and J. McGeehin (1998), The interplinian activity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geotherm. Res., 82, 19– 52. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151– 182. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199– 203. D’Argenio, B., F. Ortolani, and T. Pescatore (1987), Geology of southern Apennines: A brief outline, paper presented at International Symposium Engineering of Geological Problems in Seismic Areas, Int. Assoc. of Eng. Geol., Bari, Italy. De Gori, P., G. B. Cimini, C. Chiarabba, G. De Natale, C. Troise, and A. Deschamps (2001), Telesismic tomography of the Campanian volcanic area and surrounding Apennic belt, J. Volcanol. Geotherm. Res., 109, 52–75. Del Moro, A., P. Fulignati, P. Marianelli, and A. Sbrana (2001), Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geotherm. Res., 112, 15–24. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration magnitude uncertainty due to seismic noise: Inferences on the temporal pattern of G-R b-value at Mt. Vesuvius, Italy, Bull. Seismol. Soc. Am., 93(4), 1847– 1853. De Natale, G., P. Capuano, C. Troise, and A. Zollo (1998), A seismicity at Somma-Vesuvius and its implications for the 3-D tomography of volcano, J. Volcanol. Geotherm. Res., 82, 175–197. De Natale, G., S. M. Petrazzuoli, C. Troise, F. Pingue, and P. Capuano (2000), Internal stress at Mt. Vesuvius: A model for background seismicity at central volcano, J. Geophys. Res., 105(B7), 16,207 – 16,214. De Natale, G., C. Troise, F. Pingue, P. De Gori, and C. Chiarabba (2001), Structure and dynamics of the Somma-Vesuvius volcanic complex, Mineral. Petrol., 73(1– 3), 5 –22. De Natale, G., I. Kuznetzov, T. Kronrod, A. Peresan, A. Sarao` , C. Troise, and G. F. Panza (2004a), Three decades of seismic activity at Mt. Vesuvius: 1972–2000, Pure Appl. Geophys., 161, 123–144. De Natale, G., C. Troise, R. Trigila, D. Dolfi, and C. Chiarabba (2004b), Seismicity and 3 –D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth Planet. Sci. Lett., 221, 181–196. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238. Di Stefano, R., and C. Chiarabba (2002), Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Doglioni, C. (1991), A proposal for kinematic modeling of W-dipping subductions: Possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 426– 434. Duschenes, J., K. E. Louden, and M. C. Sinha (1986), A seismic refraction experiment in the Thyrrhenian Sea, Geophys. G. R. Astron. Soc., 85, 139–160. Federico, C., A. Aiuppa, P. Allard, S. Bellomo, P. Jean-Baptiste, F. Parello, and M. Valenza (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963–981. Fedi, M., G. Florio, and A. Rapolla (1998), 2.5D modelling of Somma- Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res., 82, 239–247. Ferrucci, F., G. Gaudiosi, N. A. Pino, G. Luongo, A. Hirn, and L. Mirabile (1989), Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, southern Italy), Geophys. Res. Lett., 16(11), 1317–1320. Finetti, I., and C. Morelli (1974), Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli, Boll. Geofis. Teor. Appl., 16, 175–222. Frondini, F., G. Chiodini, S. Caliro, S. Cardellini, and D. Granieri (2004), Diffuse CO2 soil degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642– 651, doi:10.1007/s00445-004-0346-x. Fulignati, P., P. Marianelli, and A. Sbrana (1998), New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol., 10(1), 47–54. Graham, D. W., P. Allard, C. R. J. Kilburn, F. J. Spera, and J. E. Lupton (1993), Helium isotopes in some historical lavas from Mount Vesuvius, J. Volcanol. Geotherm. Res., 58, 359–366. Gueguen, E., C. Doglioni, and M. Fernandez (1997), Lithospheric boudinage in the western Mediterranean back-arc basin, Terra Nova, 9(4), 184–187. Helgeson, H. C., J. Delany, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 1– 229. Henry, D. J., A. Navrotsky, and H. D. Zimmermann (1982), Thermodynamics of plagioclase-melt equilibria in the system albite-anorthitediopside, Geochim. Cosmochim. Acta, 46, 381– 391. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C. Imbo` , G. (1947), Considerazioni e Osservazioni comprovanti che l’eruzione del 1944 fu terminale, Boll. Soc. Nat. Napoli, 56, 1 –13. Ippolito, F., B. D’Argenio, T. Pescatore, and P. Scandone (1975), Structuralstratigraphic units and tectonic framework of southern Apennines, in Geology of Italy, edited by C. Squyres, pp. 11, Lybian Soc. of Earth Sci., Tripoli, Libya Arab Republic. Judd, W. R., Y. S. Touloukian, and R. S. Roy (1989), CINDAS Data Series on Material Properties, vol. II-2, Physical Properties of Rocks and Minerals, 548 pp., Taylor and Francis, Philadelphia, Pa. Judenherc, S., and A. Zollo (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876. Lanari, R., G. De Natale, P. Berardino, E. Sansosti, G. P. Ricciardi, S. Borgstrom, P. Capuano, F. Pingue, and C. Troise (2002), Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano, Geophys. Res. Lett., 29(9), 1292, doi:10.1029/2001GL014571. Lima, A., L. V. Danyushevsky, B. De Vivo, and L. Fedele (2003), A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, edited by B. De Vivo and R. J. Bodnar, pp. 227–249, Elsevier, New York. Marianelli, P., N. Me´trich, R. Santacroce, and A. Sbrana (1995), Mafic magma batches at Vesuvius: A glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petrol., 120, 159– 169. Marianelli, P., N. Me´trich, and A. Sbrana (1999), Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol., 61, 48–63. Navrotsky, A. (1995), Energetics of silicate melts, in Structure, Dynamics and Properties of Silicate Melts, Rev. Mineral., vol. 32, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, pp. 121–143, Mineral. Soc. of Am., Washington, D. C. Ottonello, G. (1991), Principi di Geochimica, 708 pp., Zanichelli, Bologna, Italy. Papale, P. (1997), Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids, Contrib. Mineral. Petrol., 126, 237–251. Papale, P. (1999), Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492. Papale, P. (2002), Thermodynamics of multicomponent fluid-liquid equilibrium in silicate liquids, and applications to magma degassing and ascent dynamics, in Proceedings of the Arezzo Seminar on Fluids Geochemistry, edited by A. Buccianti et al., pp. 121– 137, Pacini, Pisa, Italy. Pappalardo, L., M. Piochi, M. D’Antonio, L. Civetta, and R. Petrini (2002), Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol., 43(7), 1415–1434. Parascandola, A. (1959), Notizie Vesuviane: Il Vesuvio dal marzo 1948 al dicembre 1958, Boll. Soc. Nat. Napoli, 68, 1– 184. Parascandola, A. (1960), Notizie Vesuviane: Il Vesuvio dal gennaio 1959 al dicembre 1960, Boll. Soc. Nat. Napoli, 69, 263–298. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105. Peccerillo, A., and P. Manetti (1985), The potassic alkaline volcanism of central southern Italy: A review of the data relevant to petrogenesis and geodinamic significance, Trans. Geol. Soc. S. Afr., 88, 379–394. Piochi, M., L. Pappalardo, and G. De Astis (2004), Geochemical and isotopical variation within the Campanian Comagmatic Province: Implications on magma source composition, Ann. Geophys., 47, 1485– 1499. Piochi, M., R. A. Ayuso, B. De Vivo, and R. Somma (2006), Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303– 329. Quareni, F., and F. Mulargia (1993), Modeling the closure of a volcanic conduit with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Richet, P., and Y. Bottinga (1985), Heat capacity of aluminum-free silicates, Geochim. Cosmochim. Acta, 49, 471–486. Rolandi, G., A. M. Barrella, and A. Borrelli (1993), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., P. Petrosino, and J. McGeehin (1998), The interplinian activity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geotherm. Res., 82, 19– 52. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151– 182. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199– 203. D’Argenio, B., F. Ortolani, and T. Pescatore (1987), Geology of southern Apennines: A brief outline, paper presented at International Symposium Engineering of Geological Problems in Seismic Areas, Int. Assoc. of Eng. Geol., Bari, Italy. De Gori, P., G. B. Cimini, C. Chiarabba, G. De Natale, C. Troise, and A. Deschamps (2001), Telesismic tomography of the Campanian volcanic area and surrounding Apennic belt, J. Volcanol. Geotherm. Res., 109, 52–75. Del Moro, A., P. Fulignati, P. Marianelli, and A. Sbrana (2001), Magma contamination by direct wall rock interaction: Constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geotherm. Res., 112, 15–24. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003), Duration magnitude uncertainty due to seismic noise: Inferences on the temporal pattern of G-R b-value at Mt. Vesuvius, Italy, Bull. Seismol. Soc. Am., 93(4), 1847– 1853. De Natale, G., P. Capuano, C. Troise, and A. Zollo (1998), A seismicity at Somma-Vesuvius and its implications for the 3-D tomography of volcano, J. Volcanol. Geotherm. Res., 82, 175–197. De Natale, G., S. M. Petrazzuoli, C. Troise, F. Pingue, and P. Capuano (2000), Internal stress at Mt. Vesuvius: A model for background seismicity at central volcano, J. Geophys. Res., 105(B7), 16,207 – 16,214. De Natale, G., C. Troise, F. Pingue, P. De Gori, and C. Chiarabba (2001), Structure and dynamics of the Somma-Vesuvius volcanic complex, Mineral. Petrol., 73(1– 3), 5 –22. De Natale, G., I. Kuznetzov, T. Kronrod, A. Peresan, A. Sarao` , C. Troise, and G. F. Panza (2004a), Three decades of seismic activity at Mt. Vesuvius: 1972–2000, Pure Appl. Geophys., 161, 123–144. De Natale, G., C. Troise, R. Trigila, D. Dolfi, and C. Chiarabba (2004b), Seismicity and 3 –D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth Planet. Sci. Lett., 221, 181–196. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998), Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238. Di Stefano, R., and C. Chiarabba (2002), Active source tomography at Mt. Vesuvius: Constraints for the magmatic system, J. Geophys. Res., 107(B11), 2278, doi:10.1029/2001JB000792. Doglioni, C. (1991), A proposal for kinematic modeling of W-dipping subductions: Possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 426– 434. Duschenes, J., K. E. Louden, and M. C. Sinha (1986), A seismic refraction experiment in the Thyrrhenian Sea, Geophys. G. R. Astron. Soc., 85, 139–160. Federico, C., A. Aiuppa, P. Allard, S. Bellomo, P. Jean-Baptiste, F. Parello, and M. Valenza (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta, 66, 963–981. Fedi, M., G. Florio, and A. Rapolla (1998), 2.5D modelling of Somma- Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res., 82, 239–247. Ferrucci, F., G. Gaudiosi, N. A. Pino, G. Luongo, A. Hirn, and L. Mirabile (1989), Seismic detection of a major Moho upheaval beneath the Campania volcanic area (Naples, southern Italy), Geophys. Res. Lett., 16(11), 1317–1320. Finetti, I., and C. Morelli (1974), Esplorazione sismica a riflessione nei Golfi di Napoli e Pozzuoli, Boll. Geofis. Teor. Appl., 16, 175–222. Frondini, F., G. Chiodini, S. Caliro, S. Cardellini, and D. Granieri (2004), Diffuse CO2 soil degassing at Vesuvio, Italy, Bull. Volcanol., 66, 642– 651, doi:10.1007/s00445-004-0346-x. Fulignati, P., P. Marianelli, and A. Sbrana (1998), New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol., 10(1), 47–54. Graham, D. W., P. Allard, C. R. J. Kilburn, F. J. Spera, and J. E. Lupton (1993), Helium isotopes in some historical lavas from Mount Vesuvius, J. Volcanol. Geotherm. Res., 58, 359–366. Gueguen, E., C. Doglioni, and M. Fernandez (1997), Lithospheric boudinage in the western Mediterranean back-arc basin, Terra Nova, 9(4), 184–187. Helgeson, H. C., J. Delany, and D. K. Bird (1978), Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 1– 229. Henry, D. J., A. Navrotsky, and H. D. Zimmermann (1982), Thermodynamics of plagioclase-melt equilibria in the system albite-anorthitediopside, Geochim. Cosmochim. Acta, 46, 381– 391. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by C. R. Michael and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C Imbo` , G. (1947), Considerazioni e Osservazioni comprovanti che l’eruzione del 1944 fu terminale, Boll. Soc. Nat. Napoli, 56, 1 –13. Ippolito, F., B. D’Argenio, T. Pescatore, and P. Scandone (1975), Structuralstratigraphic units and tectonic framework of southern Apennines, in Geology of Italy, edited by C. Squyres, pp. 11, Lybian Soc. of Earth Sci., Tripoli, Libya Arab Republic. Judd, W. R., Y. S. Touloukian, and R. S. Roy (1989), CINDAS Data Series on Material Properties, vol. II-2, Physical Properties of Rocks and Minerals, 548 pp., Taylor and Francis, Philadelphia, Pa. Judenherc, S., and A. Zollo (2004), The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey, J. Geophys. Res., 109, B10312, doi:10.1029/2003JB002876. Lanari, R., G. De Natale, P. Berardino, E. Sansosti, G. P. Ricciardi, S. Borgstrom, P. Capuano, F. Pingue, and C. Troise (2002), Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano, Geophys. Res. Lett., 29(9), 1292, doi:10.1029/2001GL014571. Lima, A., L. V. Danyushevsky, B. De Vivo, and L. Fedele (2003), A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, edited by B. De Vivo and R. J. Bodnar, pp. 227–249, Elsevier, New York. Marianelli, P., N. Me´trich, R. Santacroce, and A. Sbrana (1995), Mafic magma batches at Vesuvius: A glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petrol., 120, 159– 169. Marianelli, P., N. Me´trich, and A. Sbrana (1999), Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, Bull. Volcanol., 61, 48–63. Navrotsky, A. (1995), Energetics of silicate melts, in Structure, Dynamics and Properties of Silicate Melts, Rev. Mineral., vol. 32, edited by J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, pp. 121–143, Mineral. Soc. of Am., Washington, D. C. Ottonello, G. (1991), Principi di Geochimica, 708 pp., Zanichelli, Bologna, Italy. Papale, P. (1997), Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids, Contrib. Mineral. Petrol., 126, 237–251. Papale, P. (1999), Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492. Papale, P. (2002), Thermodynamics of multicomponent fluid-liquid equilibrium in silicate liquids, and applications to magma degassing and ascent dynamics, in Proceedings of the Arezzo Seminar on Fluids Geochemistry, edited by A. Buccianti et al., pp. 121– 137, Pacini, Pisa, Italy. Pappalardo, L., M. Piochi, M. D’Antonio, L. Civetta, and R. Petrini (2002), Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol., 43(7), 1415–1434. Parascandola, A. (1959), Notizie Vesuviane: Il Vesuvio dal marzo 1948 al dicembre 1958, Boll. Soc. Nat. Napoli, 68, 1– 184. Parascandola, A. (1960), Notizie Vesuviane: Il Vesuvio dal gennaio 1959 al dicembre 1960, Boll. Soc. Nat. Napoli, 69, 263–298. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean fields and Stromboli volcanoes: Petrogenetic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105. Peccerillo, A., and P. Manetti (1985), The potassic alkaline volcanism of central southern Italy: A review of the data relevant to petrogenesis and geodinamic significance, Trans. Geol. Soc. S. Afr., 88, 379–394. Piochi, M., L. Pappalardo, and G. De Astis (2004), Geochemical and isotopical variation within the Campanian Comagmatic Province: Implications on magma source composition, Ann. Geophys., 47, 1485– 1499. Piochi, M., R. A. Ayuso, B. De Vivo, and R. Somma (2006), Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius Volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303– 329. Quareni, F., and F. Mulargia (1993), Modeling the closure of a volcanic conduit with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Richet, P., and Y. Bottinga (1985), Heat capacity of aluminum-free silicates, Geochim. Cosmochim. Acta, 49, 471–486. Rolandi, G., A. M. Barrella, and A. Borrelli (1993), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., P. Petrosino, and J. McGeehin (1998), The interplinian activity at Somma-Vesuvius in the last 3500 years, J. Volcanol. Geotherm. Res., 82, 19– 52. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151– 182. Saccorotti, G., G. Ventura, and G. Vilardo (2002), Seismic swarms related to diffusive processes: The case of Somma-Vesuvius volcano, Italy, Geophysics, 67(1), 199– 203. Santacroce, R. (1987), Somma-Vesuvius, 251 pp., Cons. Naz. Delle Ric., Rome, Italy. Santacroce, R., R. Cioni, L. Civetta, P. Marianelli, N. Me´trich, and A. Sbrana (1994),HowVesuvius works, Proc. Meet. Lincei, 112, 185–196. Scandone, P. (1979), Origin of the Tyrrhenian sea and Calabrian arc, Boll. Soc. Geol. Ital., 98, 27– 34. Scandone, P. (1982), Structure and evolution of the Calabrian Arc, Earth E, Vol. Sci., 2(3), 172–180. Scarpa, R., F. Tronca, F. Bianco, and E. Del Pezzo (2002), High resolution velocity structure beneath Mount Vesuvius from seismic array data, Geophys. Res. Lett., 29(21), 2040, doi:10.1029/2002GL015576. Schutte, K. G. (1978), Crustal structure of southern Italy, in Alps, Apennines and Hellenides, edited by H. Closs, D. R. Roeder, and K. Schmidt, pp. 315–327, Scweizerbart, Stuttgart, Germany. Signorelli, S., and M. Carroll (2002), Experimental study of Cl solubility in hydrous alkaline melts: Constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts, Contrib. Mineral. Petrol., 143, 209–218, doi:10.1007/s00410-001-0320-y. Stebbins, J. F., I. S. E. Carmichael, and D. E. Weill (1983), The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline, Am. Mineral., 68, 717– 730. Trigila, R., and A. De Benedetti (1993), Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria, J. Volcanol. Geotherm. Res., 58, 315– 343. Vasseur, G., F. Brigaud, and L. Demomgodin (1995), Thermal conductivity estimation in sedimentary basins, Tectonophysics, 244, 167– 174. Vilardo, G., G. Ventura, and G. Milano (1999), Factors controlling the seismicity of the Somma-Vesuvius volcanic complex, Volcanol. Seismol., 20, 219– 238. Villemant, B., R. Trigila, and B. De Vivo (1993), Geochemistry of Vesuvius volcanics during 1631– 1944 period, J. Volcanol. Geotherm. Res., 58, 291– 313. Webster, J. D., B. De Vivo, and C. Tappen (2003), Volatiles, magmatic degassing and eruptions of Mt. Somma-Vesuvius: Constraints from silicate melt inclusions, solubility experiments and modeling, in Melt Inclusions in Volcanic Systems: Methods, Applications and Problems, Dev. Volcanol., vol. 5, edited by B. De Vivo and R. J. Bodnar, pp. 207 – 226, Elsevier, New York. Zollo, A., et al. (1996), Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius, Science, 274, 592–594.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorQuareni, F.en
dc.contributor.authorMoretti, R.en
dc.contributor.authorPiochi, M.en
dc.contributor.authorChiodini, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-8285-2503-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.orcid0000-0003-4214-1998-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
QuaMor_2007.pdf652.94 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

7
checked on Feb 10, 2021

Page view(s) 20

365
checked on Mar 27, 2024

Download(s)

22
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric