Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3250
DC FieldValueLanguage
dc.contributor.authorallGaspar, M.; Departamento de Geologia da Faculdade de Cieˆncias/CREMINER, Universidade de Lisboa, Campo Grande, Edı´ficio C6, Piso 4, Sala 6.4.48, 1749-016 Lisboa, Portugalen
dc.contributor.authorallKnaack, C.; Department of Geology, Washington State University, P.O. Box. 642812, Pullman, WA 99164-2812, USAen
dc.contributor.authorallMeinert, L. D.; Department of Geology, Smith College, Northampton, MA 01063, USAen
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-12-14T07:28:19Zen
dc.date.available2007-12-14T07:28:19Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3250en
dc.description.abstractMetamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/ Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids. Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr>99). Fe-rich garnets (Adr>90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of RREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show ‘‘typical’’ HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr>90) have much lower RREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism ð½ X2þ VIII 1 ½REE3þ VIII þ1 ½ Si4þ IV 1½Z3þ IV þ1Þ, whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular– andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions. Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries1/72 (2008)en
dc.subjectA LA-ICP-MSen
dc.subjectCrown Jewelen
dc.titleREE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold depositen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber185-205en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.gca.2007.09.033en
dc.relation.referencesAines R. D. and Rossman G. R. (1984) Water content of mantle garnets. Geology 12, 720–723. Akizuki M. (1984) Origin of optical variations in grossular– andradite garnet. Am. Mineral. 69, 328–338. Akizuki M. (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am. Mineral. 74, 859–864. Allen F. M. and Buseck P. R. (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am. Mineral. 73, 568–584. Allen D. E. and Seyfried W. E. (2005) REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 69, 675–683. Ayers J. C. and Eggler D. H. (1995) Partitioning of elements between silicate melt and H2O-NaCl fluids at 1.5 and 2.0 GPa pressure: implications for mantle metasomatism:. Geochim. Cosmochim. Acta 59, 4237–4246. Bai T. B. and Koster van Groos A. F. (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim. Cosmochim. Acta 63, 1117–1131. Ballaran T. B., Carpenter M. A. and Geiger C. A. (1999) Local structural heterogeneity in garnet solid solutions. Phys. Chem. Miner. 26, 554–569. Bau M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium. Chem. Geol. 93, 219–230. Bea F., Pereira M. D. and Stroh A. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 117, 291–312. Bea F., Montero P., Garuti G. and Zacharini F. (1997) Pressuredepende of rare earth element distribution in amphibolite and granulite-grade garnets. A LA-ICP-MS study. Geostandard Newslett. 21, 253–270. Becker U. and Pollok K. (2002) Molecular simulations of interfacial and thermodynamic mixing properties of grossular–andradite garnets. Phys. Chem. Miner. 29, 52–64. Blanc Y. and Maisonneuve J. (1973) Sur la birefringence des grenats calciques. Bull. Soc. Fr. Mineral. Crystallogr. 96, 320–321. Blichert-Toft J., Albare`de F. and Kornprobst J. (1999) Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morroco: Implications for basalt origin. Science 283, 1303–1306. Boyd F. R., Pearson D. G., Hoal K. O., Hoal B. G., Nixon P. H., Kingston M. J. and Mertzman S. A. (2004) Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592. Chase A. B. and Lefever R. A. (1960) Birefringence of synthetic garnets. Am. Mineral. 45, 1126–1129. Chernoff C. B. and Carlson W. D. (1999) Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology 27, 555–558. Ciobanu C. L. and Cook N. J. (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol. Rev. 24, 315–370. Cohen-Addad C., Ducros P. and Bertaut E. F. (1967) Etude de la substitution du groupement SiO4 par (OH)4 dans les compose`s Al2Ca3(OH)12 et Al2Ca3(SiO4)2.16(OH)3.36 de type grenet. Acta Crystallogr. 23, 220–230. Douville E., Bienvenu P., Charlou J., Donval J., Fouquet Y., Appriou P. and Gamo T. (1999) Ytrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 63, 627–643. Ducheˆne S., Blichert-Toft J., Luais B., Te´louk P., Lardeaux J. M. and Albare`de F. (1997) The Lu–Hf dating of garnets and ages of the Alpine high pressure metamorphism. Nature 387, 586–589. Einaudi M. T., Meinert L. D. and Newberry R. J. (1981) Skarn deposits. Econ. Geol. 75th Anniversary Volume, 317–391. Flynn R. T. and Burnham W. (1978) An experimentaldetermination of rare earth partition coefficients between a chloride containing vapour phase and silicate melts. Geochim. Cosmochim. Acta 42, 685–701. Gaspar, M. (2005) The Crown Jewel gold skarn deposit. Ph.D. Thesis, Washington State University. Available from: http:// griffin.wsu.edu/. Geiger C. A., Winkler B. and Langer K. (1989) Infrared spectra of synthetic almandine–grossular and almandine–pyrope garnet solid solutions: evidence for equivalent site behaviour:. Mineral. Mag. 53, 231–237. Graunch R. I. (1989) Rare earth elements in metamorphic rocks. In Geochemistry and Mineralogical Rare Earth Elements: Rev. Mineral (eds. B. R. Lipin and G. A. Mckay), pp. 146–167. vol. 21. Mineralogical Society of America. Griffen D. T., Hatch D. M., Phillips W. R. and Kulaksiz S. (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspiter75-grandite25 garnet. Am. Mineral. 77, 399–406. Haas J. R., Shock E. L. and Sassani D. C. (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–5350. Halden N. M. (1996) Determination of Lyapounov exponents to characterize the oscillatory distribution of trace elements in minerals. Can. Mineral. 34, 1127–1135. Harris N. B. W., Gravestock P. and Inger S. (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem. Geol. 100, 41–49. Hatch D. M. and Griffen D. T. (1989) Phase transitions in the grandite garnets. Am. Mineral. 74, 151–159. Helgeson H. C. and Kirkham D. H. (1976) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: III. Equation of state for aqueous species at infinite dilution. Am. J. Sci. 276, 97–240. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1974a) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1974b) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II. Debye–Hu¨ckel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 C and 5 kb. Am. J. Sci. 281, 1249–1516. Hickey, R. J. I., (1990) The Geology of the Buckhorn Mountain Gold Skarn, Okanogan County, Washington. M.Sc. Thesis, Washington State University. Hickey R. J. I. (1992) The Buckhorn Mountain (Crown Jewel) gold skarn deposit, Okanogan County, Washington. Econ. Geol. 87, 125–141. Hickmott D. D. and Spear F. S. (1992) Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories in retrograded rocks. J. Petrol. 33, 965–1005. Hoal K. E. O., Hoal B. G., Erlank A. J. and Shimizu N. (1994) Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth Planet. Sci. Lett. 126, 303–313. Hofmeister A. M., Schaal R. B., Campbell K. R., Berry S. L. and Fagan T. J. (1998) Prevalence and origin of birefringence in 48 garnets from the pyrope–almandine–grossularite–spessartine quaternary. Am. Mineral. 83, 1293–1301. Jamtveit B. (1991) Oscillatory zonation patterns in hydrothermal grossular–andradite garnet. Nonlinear dynamics in regions of immiscibility. Am. Mineral. 76, 1319–1327. Jamtveit B. and Hervig R. L. (1994) Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 263, 505–508. Jamtveit B., Wogelius R. A. and Fraser D. G. (1993) Zonation patterns of skarn garnets: records of hydrothermal system evolution. Geology 21, 113–116. Johnson J. W., Oelkers E. H. and Helgeson H. C. (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 C. Computers & Geosciences 8, 899–947. Jones, D. M. (1992) Preliminary Geology and Exploration Potential of the Crown Jewel project, Okanogan County, Washington. Internal Report, Battle Mountain Exploration Company, Tucson, Arizona, p. 26. Kingma K. J. and Downs J. W. (1989) Crystal-structure of a birefringent andradite. Am. Mineral. 74, 1307–1316. Kitamura K. and Komatsu H. (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al,Fe)5O12. Kristall. Technik. 13, 811–816. Klinkhammer G. P., Elderfield H., Edmond J. M. and Mitra A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Cosmochim. Acta 58, 5105–5113. Knittle E., Hawthorne A., Davis M. and Williams Q. (1992) A spectroscopy study of high-pressure behaviour of the O4H4 substitution in garnet. In High Pressure Research: Application to Earth and Planetary Sciences (eds. Y. Syono and M.Manghnani). Terrapub/Am. Geophys. Union, Tokyo, pp. 297–304. Korzhinskii D. S. (1968) The theory of metasomatic zoning. Miner. Deposita. 3, 222–231. Korzhinskii D. S. (1970) Theory of Metasomatic Zoning. Clarendon Press, Oxford. Kravchuk I. F., Ivanova G. F., Varezhkina N. S. and Malinin S. D. (1995) REE fractionation in acid fluid-magma systems. Geochem. Intern. 32, 60–68. Lessing P. and Standish R. P. (1973) Zoned garnet from Crested Butte, Colorado. Am. Mineral. 58, 840–842. Lottermoser B. G. (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol. Rev. 7, 25–41. Mayanovic R. A., Jayanetti S., Anderson A. J., Bassett W. A. and Chou I-M. (2002) The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 C and 270 MPa. J. Phys. Chem. A 106, 6591–6599. Mayanovic R. A., Anderson A. J., Bassett W. A. and Chou I-M. (2007) On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aquo and chloro complexes. Chem. Geol. 239, 266–283. McAloon B. P. and Hofmeister A. M. (1993) Single-crystal absorption and reflection infrared spectroscopy of birefringent grossular–andradite garnets. Am. Mineral. 78, 957–967. McDonough W. F. and Sun S.-S. (1995) The composition of the Earth. Chem. Geol. 120, 223–253. McIntire W. L. (1963) Trace element partition coefficients—a review of theory and applications to geology. Geochim. Cosmochim. Acta 27, 1209–1264. Mckay G. A. (1989) Partition of rare earth elements between major silicate minerals and basaltic melts. In Geochemistry and Mineralogy of Rare Earth Elements: Rev. Mineral (eds. B. R. Lipin and G. A. Mckay), pp. 45–78. vol. 21. Mineralogical Society of America. Meagher E. P. (1982) Silicate garnets. In Orthosilicates: Rev Mineral (ed. P. H. Ribbe), pp. 25–66. vol. 5. Mineralogical Society of America. Meinert L. D. (1992) Skarns and skarn deposits. Geosci. Can. 19, 145–162. Meinert L. D. (1997) Application of skarn deposit zonation models to mineral exploration. Explor. Min. Geol. 6, 185–208. Meinert L. D., Dipple G. M. and Nicolescu S. (2005) World skarn deposits. Econ. Geol. 100th Anniversary Volume, 299–336. Menzer G. (1926) Die kristallstructure von granat. Zeitschift fu¨ r Kristallographie 63, 157–158. Mezger K., Essene E. J. and Halliday A. N. (1992) Closure temperatures of the Sm–Nd system in metamorphic garnets. Earth. Planet. Sci. Lett. 113, 397–409. Michard A. (1989) Rare earth element systematics in hydrothermal fluids. Geochim. Chosmochim. Acta 53, 745–750. Michard A. and Albare`de F. (1986) The REE content of some hydrothermal fluids. Chem. Geol. 55, 51–60. Mills R. A. and Elderfield H. (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26 NMid-Atlantic Ridge. Geochim. Cosmochim. Acta 59, 3511– 3524. Moretti R. and Ottonello G. (1998) An appraisal of endmember energy and mixing properties of the rare earth garnets. Geochim. Cosmochim. Acta 62, 1147–1173. Nakano T., Takahara H. and Norimasa N. (1989) Intracrystalline distribution of major elements in zoned garnet from skarn in the Chichibu mine, central Japan; illustration by color-coded maps. Can. Mineral. 27, 499–507. Nicolescu S., Cornell D. H., So¨dervall U. and Odelius H. (1998) Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. Eur. J. Mineral. 10, 251–259. Ottonello G. and Moretti R. (1998) On the significance of static interactions in silicate garnets. J. Phys. Chem. Solid 59, 893–901. Ottonello G., Bokreta M. and Sciuto P. F. (1996) Parameterization of energy and interactions in garnets: end-member properties. Am. Mineral. 81, 429–447. Pawlak D., Wozniak K. and Frukacz Z. (1999) Correlation between structural parameters of garnet and garnet-like structures. Acta Crystallaogr. B55, 736–744. Prince C. I., Kosler J., Vance D. and Gu¨nther D. (2000) Comparison of laser ablation ICP-MS and isotope dilution REE analyses—implications for Sm–Nd garnet geochronology. Chem. Geol. 168, 255–274. Reed M. J., Candela P. A. and Piccoli P. M. (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 C and 200 MPa. Contrib. Mineral. Petrol. 140, 251–262. Rossman G. R. and Aines R. D. (1986) Birefringent grossular from Asbestos, Quebec, Canada. Am. Mineral. 71, 779–780. Rossman G. R. and Aines R. D. (1991) The hydrous components in garnets: grossular–hydrogrossular. Am. Mineral. 76, 1153–1164. Scherer E. E., Cameron K. L. and Blichert-Toft J. (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm– Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta 64, 3413–3432. Scherer E. E., Cameron K. L., Johnson C. M., Beard B. L., Barovich K. M. and Collerson K. D. (1997) Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chem. Geol. 142, 63–78. Schwandt C. S., Papike J. J., Shearer C. K. and Brearley A. J. (1993) A SIMS investigation of REE chemistry of garnet in garnetite associated with the Broken Hill Pb–Zn–Ag orebodies, Australia. Can. Mineral. 31, 371–379. Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and calcogenides. Acta Crystallogr. A32, 751–767. Shannon R. D. and Prewitt C. T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946. Shimizu N. and Sobolev N. V. (1995) Young peridotitic diamonds from the Mir kimberlite pipe. Nature 375, 394–397. Shore M. and Fowler A. D. (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral. 34, 1111–1126. Skublov S. G. and Drugova G. M. (2000) REE distribution in metamorphic garnets. Herald DGGGMS RAS 2, 60–61. Smith M. P., Henderson P., Jeffries T. E. R., Long J. and Williams C. T. (2004) The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J. Petrol. 45, 457–484. Stiles C. A., Jones D. M., Neal W. S., Truckle D. M., Penick M. J. and Senter L. E. (1995) Economic geology of the Crown Jewel gold skarn deposit, Okanogan County, Washington. Battle Mountain Exploration Company Report, 21. Sverjensky D. M. (1984) Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 67, 70–78. Take´uchi Y. and Haga N. (1976) Optical anomaly and structure of silicate garnets. Proc. Jap. Acad. 52, 228–231. Urabe, T., Sakagawa, M., Nakano, T., Kamioka, H. (1992) Partitioning of REE between granitic melt and vapor and generation of REE-bearing pegmatite: 29th IGC, Kyoto, Japan, p. 242 (abstract). van Westrenen W., Allan N. L., Blundy J. D., Lavrentiev M. Y., Lucas B. R. and Purton J. A. (2003) Dopant incorporation into garnet solid solutions-a breakdown of Goldschmidt’s first rule. Chem. Commun., 786–787. van Westrenen W., Allan N. L., Blundy J. D., Purton J. A. and Wood B. J. (2000) Atomistic simulation of trace element incorporation into garnets-comparison with experimental garnet- melt partitioning data. Geochim. Cosmochim. Acta 64, 1629–1639. van Westrenen W., Blundy J. D. and Wood B. J. (1999) Crystalchemistry controls on trace element partitioning between garnet and anhydrous melt. Am. Mineral. 84, 838–847. van Westrenen W., Wood B. J. and Blundy J. D. (2001) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib. Mineral. Petrol. 142, 219–234. Whitney P. R. and Olmsted J. F. (1998) Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA. Geochim. Cosmochim. Acta 62, 2965–2977. Wood S. A. (1990) The aqueous geochemistry of the rare earth elements and yttrium. Part I. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186. Wood, S. A. (2003) The geochemistry of rare earth elements and yttrium in geothermal waters. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulersand Witnesses of Processes within the Earth (eds. S. F. Simmons and I. Graham). Soc. Econ. Geol. Spec. Publ, 10, pp. 133–158. Yardley B. W., Rochelle C. A., Barnicoat A. C. and Lloyd G. E. (1991) Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Min. Mag. 55, 357–365. Zhang H., Menzies M. A., Lu F. and Zhou X. (2000) Major and trace element studies on garnets from Paleozoic kimberliteborne mantle xenoliths and megacrysts from the North China craton. Sci. China D43, 423–430.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGaspar, M.en
dc.contributor.authorKnaack, C.en
dc.contributor.authorMeinert, L. D.en
dc.contributor.authorMoretti, R.en
dc.contributor.departmentDepartamento de Geologia da Faculdade de Cieˆncias/CREMINER, Universidade de Lisboa, Campo Grande, Edı´ficio C6, Piso 4, Sala 6.4.48, 1749-016 Lisboa, Portugalen
dc.contributor.departmentDepartment of Geology, Washington State University, P.O. Box. 642812, Pullman, WA 99164-2812, USAen
dc.contributor.departmentDepartment of Geology, Smith College, Northampton, MA 01063, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartamento de Geologia da Faculdade de Cieˆncias/CREMINER, Universidade de Lisboa, Campo Grande, Edı´ficio C6, Piso 4, Sala 6.4.48, 1749-016 Lisboa, Portugal-
crisitem.author.deptDepartment of Geology, Washington State University, P.O. Box. 642812, Pullman, WA 99164-2812, USA-
crisitem.author.deptDepartment of Geology, Smith College, Northampton, MA 01063, USA-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
GasKna_2007.pdf2.3 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

130
checked on Feb 10, 2021

Page view(s) 10

323
checked on Apr 17, 2024

Download(s)

55
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric