Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3135
DC FieldValueLanguage
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCirella, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSpudich, P.; US Geological Survey, Menlo Park, CA, USA.en
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-12T15:33:54Zen
dc.date.available2007-12-12T15:33:54Zen
dc.date.issued2007-07-18en
dc.identifier.urihttp://hdl.handle.net/2122/3135en
dc.description.abstractWe present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green’s functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/112(2007)en
dc.subjectearthquakeen
dc.subjectkinematicen
dc.subjectfinite faulten
dc.subjectinversionen
dc.subjectsource mechanicsen
dc.subjectwaveformen
dc.titleA global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB07314en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2006JB004821en
dc.relation.referencesArchuleta, R. J. (1984), A faulting model for the 1979 Imperial Valley earthquake, J. Geophys. Res., 89, 4559–4585. Beroza, G. C., and P. Spudich (1988), Linearized inversion for fault rupture behaviour: application to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res., 93(B6), 6275– 6296. Cirella, A., A. Piatanesi, E. Tinti, and M. Cocco (2006), Dynamically consistent source time functions to invert kinematic rupture histories, Eos, Trans. AGU, 87(52), Fall Meet. Suppl., Abstract S41B-1323. Cohee, B. P., and G. C. Beroza (1994), A comparison of two methods for earthquake source inversion using strong motion seismograms, Annali di Geofisica, 37(6), 1515–1538. Delouis, B., D. Giardini, P. Lundgren, and J. Salichon (2002), Joint inversion of Insar, GPS, teleseismic and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 Izmit mainshock, Bull. Seismol. Soc. Am., 92(1), 278–299. Emolo, A., and A. Zollo (2005), Kinematic source parameters for the 1989 Loma Prieta earthquake from the nonlinear inversion of accellerograms, Bull. Seismol. Soc. Am., 95(3), 981–994, doi:10.1785/0120030193. Festa, G., and A. Zollo (2006), Fault slip and rupture velocity inversion by isochrone backprojection, Geophys. J. Int., 166, 745– 756, doi:10.1111/ j.1365-246X.2006.03045.x. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo (2003), Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seismol. Soc. Am., 93, 1468– 1478. Graves, R. W., and D. J. Wald (2001), Resolution analysis of finite source inversion using one- and three-dimensional Green’s functions: 1. Strong motions, J. Geophys. Res., 106(B5), 8745– 8766. Hartzell, S., and T. H. Heaton (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake, Bull.Seismol. Soc. Am., 73, 1553–1583. Hartzell, S., and P. Liu (1995), Determination of Earthquake Source Paramenters Using a Hybrid Global Search Algorithm, Bull. Seismol. Soc. Am., 85, 516– 524. Hudnut, K. W., Y. Bock, M. Cline, P. Fang, J. Freymuller, K. Gross, D. Jackson, S. Larson, M. Lisowski, Z. Shen, and J. Svarc (1996), Coeismic displacements of the 1994 Northridge, California earthquake, Geol. Soc. Am. Bull., 86, S19– S36, no. 1B. Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based on seismic wave analysis, J. geophys. Res., 102(B12), 27,379–27,391. Iwata, T., and H. Sekiguchi (2002), Source process and near-source ground motion during the 2000 Tottori-ken-Seibu earthquake, Proc. 11th Japan Earthq. Eng. Symp., 125– 128 (in Japanese with English abstract). Ji, C., D. J. Wald, and D. V. Helmberger (2002), Source description of the 1999 Hector Mine, California, earthquake, Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92(4), 1192– 1207. Kennett, B. L. N. (2004), Consistency region in non-linear inversion, Geophys. J. Int., 157, 583– 588. Liu, P., and R. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green’s functions: application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318, doi:10.1029/2003JB002625. Liu, P., S. Custodio, and R. J. Archuleta (2006), Kinematic inversion of the 2004 M 6.0 Parkfield earthquake including an approximation to site effects, Bull. Seismol. Soc. Am., 96(4B), S143 – S158, doi:10.1785/ 0120050826. Mosegaard, K., and M. Sambridge (2002), Monte Carlo methods in geophysical inverse problem, Rev. Geophys., 40(3), 1–29, 1009, doi:10.1029/ 2000RG000089. Mosegaard, K., and A. Tarantola (1995), Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100(B7), 12,431–12,447. Olson, A. H., and R. J. Apsel (1982), Finite fault and inversion theory with application to 1979 Imperial Valley earthquake, Bull. Seismol. Soc. Am., 72, 1969– 2001. Olson, A. H., J. A. Orcutt, and G. A. Frasier (1984), The discrete wave number/finite element method for synthetic seismograms, Geophys. J. R. Astr. Soc., 77, 421–460. Peyrat, S., and K. B. Olsen (2004), Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake, Geophys. Res. Lett., 31, L05604, doi:10.1029/2003GL019058. Pulido, N., and T. Kubo (2004), Near-fault strong motion complexity of the 2000 Tottori earthquake (Japan) from a broadband source asperity model, Tectonophysics, 390, 177– 192. Rothman, D. (1986), Automatic estimation of large residual static corrections, Geophysiscs, 51, 332– 346. Sagiya, T., T. Nishimura, Y. Hatanaka, E. Fukuyama, and W. L. Ellsworth (2002), Crustal movements associated with the 2000 western Tottori earthquake and its fault models, ZiSin (J. Seismol. Soc. Jpn.), 54, 523– 534 (in Japanese with English abstract). Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm- II. Appraising the ensemble, Geophys. J. Int., 138, 727– 746. Sambridge, M. (2001), Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm, Inverse Problems, 17, 387– 403. Semmane, F., F. Cotton, and M. Campillo (2005), The 2000 Tottori earthquake: a shallow earthquake with no surface rupture and slip properties controlled by depth, J. Geophys. Res., 110, B03306, doi:10.1029/ 2004JB003194. Sen, M., and P. L. Stoffa (1991), Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624– 1638. Sen, M., and P. L. Stoffa (1995), Global Optimization Methods in Geophysical Inversion, Adv. Explor. Geophys., vol. 4, Elsevier Sci., New York. Shibutani, T., M. Sambridge, and B. Kennett (1996), Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia, Geophys. Res. Lett., 23(14), 1829– 1832. Spudich, P. (1980), The DeHoop-Knopoff representation theorem as a linear inversion problem, Geophys. Res. Lett., 9, 717– 720. Spudich, P., and D. P. Miller (1990), Seismic site effects and the spatial interpolation of earthquake seismograms: Results using aftershocks of the 1986 North Palm Springs, California, earthquake, Bull. Seismol. Soc. Am., 80(6), 1504– 1532. Spudich, P., and L. Xu (2003), Software for calculating earthquake ground motions from finite faults in vertically varying media, in International Handbook of Earthquake and Engineering Seismology, Academic Press. Tinti, E., E. Fukuyama, A. Piatanesi, and M. Cocco (2005), A kinematic source time function compatible with earthquake dynamics, Bull. Seismol. Soc. Am., 95(4), 1211 – 1223, doi:10.1785/0120040177. Wald, D. J., and R. W. Graves (2001), Resolution analysis of finite source inversion using one- and three-dimensional Green’s functions: 2. Combining seismic and geodetic data, J. Geophys. Res., 106(B5), 8767– 8788. Wessel, P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorCirella, A.en
dc.contributor.authorSpudich, P.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUS Geological Survey, Menlo Park, CA, USA.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUSGS, Menlo Park, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0002-4144-3794-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2007_JGR_rpi_inversion.pdfmain article3.8 MBAdobe PDF
2006JB004821RR-text_figures.pdfunformatted final version2.09 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

58
checked on Feb 10, 2021

Page view(s) 20

320
checked on Apr 24, 2024

Download(s) 50

202
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric