Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3134
DC FieldValueLanguage
dc.contributor.authorallLomax, A.; A Lomax Scientific, Mouans-Sartoux, Franceen
dc.contributor.authorallMichelini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-12T15:30:54Zen
dc.date.available2007-12-12T15:30:54Zen
dc.date.issued2007-04-20en
dc.identifier.urihttp://hdl.handle.net/2122/3134en
dc.description.abstractWe introduce a rapid and robust, energy-duration procedure, based on the Haskell, extendedsource model, to obtain an earthquake moment and a moment magnitude, MED. Using seismograms at teleseismic distances (30!–90!), this procedure combines radiated seismic energy measures on the P to S interval of broadband signals and source duration measures on highfrequency, P-wave signals. The MED energy-duration magnitude is scaled to correspond to the Global Centroid-Moment Tensor (CMT) moment-magnitude, MCMT w , and can be calculated within about 20 min or less after origin time (OT). The measured energy and duration values also provide the energy-to-moment ratio, !, used for identification of tsunami earthquakes. The MED magnitudes for a set of recent, large earthquakes match closely MCMT w , even for the largest, great earthquakes; these results imply that the MED measure is accurate and does not saturate. After the 2004 December 26 Sumatra-Andaman mega-thrust earthquake, magnitude estimates available within 1 hr of OT ranged from M = 8.0 to 8.5, the CMT magnitude, available about 3 hr after OT, was MCMT w = 9.0, and, several months after the event, Mw = 9.1–9.3 was obtained from analysis of the earth normal modes. The energy-duration magnitude for this event is MED = 9.2, a measure that is potentially available within 20 min after OT. After the 2006 July 17, Java earthquake, the magnitude was evaluated at M = 7.2 at 17 min after OT, the CMT magnitude, available about 1 hr after OT, was MCMT w = 7.7; the energy-duration results for this event give MED = 7.8, with a very long source duration of about 160 s, and a very low ! value, indicating a possible tsunami earthquake.en
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/170(2007)en
dc.subjectearthquakeen
dc.subjectmagnitudeen
dc.subjectseismic momenten
dc.subjectseismogramsen
dc.subjecttsunamien
dc.subjectwaveform analysisen
dc.titleAn energy-duration procedure for rapid determination of earthquake magnitude and tsunamigenic potentialen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1195-1209en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1111/j.1365-246X.2007.03469.xen
dc.relation.referencesAmmon, C.J. et al., 2005. Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308, 1133–1139. Ammon, C.J., Kanamori, H., Lay, T. & Velasco, A.A., 2006. The 17 July 2006Java tsunami earthquake, Geophys. Res. Lett., 33, L24 308, doi: 10.1029/2006GL028005. Boatwright, J. & Choy, G.L., 1986. Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys. Res., 91, 2095–2112. Boatwright, J., Choy, G.L. & Seekins, L.C., 2002. Regional estimates of radiated seismic energy, Bull. Seism. Soc. Am., 92, 1241–1255. Choy, G.L. & Boatwright, J.L., 1995. Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res., 100, 18 205–18 228. Cocco, M. & Boatwright, J., 1993. The envelopes of acceleration time histories, J. Geophys. Res., 83, 1095–1114. Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary Reference Earth Model (PREM), Phys. Earth Planet. Inter., 25, 297–356. Dziewonski, A., Chou, T.A. & Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852. Ekstr¨om, G., 1994. Rapid earthquake analysis utilizes the internet, Comput. Phys., 8, 632–638. Geist, E.L., Bilek, S.L., Arcas,D.&Titov,V.V., 2006. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes, Earth Planets Space, 58, 185–193. Gusev, A.A.&Pavlov,V.M., 1991. Deconvolution of squared velocitywaveform as applied to study of a noncoherent short-period radiator in the earthquake source, Pure Appl. Geophys., 136, 235–244. Gutenberg, B., 1945. Amplitudes of P, PP, and S and magnitude of shallow earthquakes, Bull. Seism. Soc. Am., 35, 57–69. Hanks, T.C. & Kanamori, H., 1979. A moment magnitude scale, J. Geophys. Res., 84(B5), 2348–2350. Haskell, N.A., 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am., 54, 1811– 1841. Heinrich, P., Piatanesi, A. & Hebert, H., 2001. Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event, Geophys. J. Int., 145, 97–111. Hirshorn, B., 2006. R.H. Hagemeyer Pacific Tsunami Warning Center, presentation for PTWS-WG1, Intergovernmental Coordination Group for the Pacific Tsunami Warning and Mitigation System (ICG/PTWS), Melbourne, Australia. (http://ioc3.unesco.org/ptws) Kanamori, H., 1972. Mechanism of tsunami earthquakes, Phys. Earth Planet. Int., 6, 346–359. Kanamori, H., 1977. The energy release in great Earthquakes, J. Geophys. Res., 82, 2981–2987. Kanamori, H., 1978. Quantification of earthquakes, Nature, 271, 411– 414. Kanamori, H., 2006. The radiated energy of the 2004 Sumatra-Andaman earthquake in Earthquakes: Radiated Energy and the Physics of Faulting, eds Abercrombie, A., McGarr, A., Kanamori, H., Di Toro, G., AGU, Geophysical Monograph Series, 170, Section 1. Kanamori, H. & Kikuchi, M., 1993. The 1992 Nicaragua earthquake; a slow tsunami earthquake associated with subducted sediments, Nature, 361, 714–716, 1993. Kanjo, K., Furudate, T. & Tsuboi, S., 2006. Application ofMwp to the Great December 26, 2004 Sumatra Earthquake, Earth Planets Space, 58, 121– 126. Kawakatsu, H., 1995. Automated near-realtime CMT inversion, Geophys. Res. Lett., 22, 2569–2572. Kennett, B.L.N., Engdahl, E.R. & Buland R., 1995. Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108– 124. Kerr, R.A., 2005. Failure to gauge the quake crippled the warning effort, Science, 307, 201. Kikuchi, M., Yamanaka, Y., Abe, K. & Morita, Y., 1999. Source rupture process of the Papua New Guinea earthquake of July 17, 1998 inferred from teleseismic body waves, Earth Planets Space, 51, 1319– 1324. Lay, T., 2002. The Earth’s Interior, in International Handbook of Earthquake and Engineering Seismology, pp. 829–860. edsW.H.K. Lee, H. Kanamori, P.C. Jennings & C. Kisslinger, Academic Press, Amsterdam. Lay, T. et al., 2005. The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127–1133. Lomax, A., 2005. Rapid estimation of rupture extent for large earthquakes: application to the 2004, M9 Sumatra-Andaman mega-thrust, Geophys. Res. Lett., 32, L10 314, doi: 10.1029/2005GL022437. Lomax, A. & Michelini, A., 2005. Rapid determination of earthquake size for hazard warning, Eos Trans. AGU, 86(19), 185–189. Menke, W. & Levin, V., 2005. A strategy to rapidly determine the magnitude of great earthquakes, Eos Trans. AGU, 85, 185, doi: 10.1029/2005EO190002. NEIC, 2004. NEIC Fast Moment Tensors, in hypertext, http://neic.usgs.gov/neis/FM/fast˙moment.html Newman, A.V., and Okal, E.A., 1998. Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes, J. Geophys. Res., 103(11), 26 885–26 898. NGDC, 2006. ETOPO2v2, 2-minute gridded global relief data, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center. Okal, E., 2003. T Waves from the 1998 Papua New Guinea Earthquake and its aftershocks: timing the tsunamigenic slump, Pure App. Geophys., 160, 1843–1863. Okal, E.A. & Talandier, J., 1989. Mm: a variable period mantle magnitude, J. Geophys. Res., 94, 4169–4193. Park, J. et al., 2005. Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308, 1139–1144. Pelayo, A.M. & Wiens, D.A., 1992. Tsunami earthquakes: slow thrustfaulting events in the accretionary wedge, J. Geophys. Res., 97, 15 321–15 337. Polet, J. & Kanamori, H., 2000. Shallow subduction zone earthquakes and their tsunamigenic potential, Geophys. J. Int., 142, 684–782. PTWC, 2004a. Tsunami Bulletin Number 001, Issued at 0114Z 26 Dec 2004, Pacific Tsunami Warning Center/NOAA/NWS. PTWC, 2004b. Tsunami Bulletin Number 002, Issued at 0204Z 26 Dec 2004, Pacific Tsunami Warning Center/NOAA/NWS. PTWC, 2006a. Tsunami Bulletin Number 001, Issued at 0836Z 17 Jul 2006 Pacific Tsunami Warning Center/NOAA/NWS. PTWC, 2006b. Tsunami Bulletin Number 002, Issued at 1108Z 17 Jul 2006 Pacific Tsunami Warning Center/NOAA/NWS. Satake, K., 2002. Tsunamis, in International Handbook of Earthquake and Engineering Seismology, pp. 437–451, eds W.H.K. Lee, H. Kanamori, P.C. Jennings & C. Kisslinger, Academic Press, Amsterdam. Seno, T. & Hirata, K., 2006. Did the 2004 Sumatra-Andaman earthquake involve a component of tsunami earthquakes? Bull. Seism. Soc. Am., 97, S296–S306. Shearer, P., 1999. Introduction to Seismology, 260 pp, Cambridge Univ. Press, New York. Stein, S. & Okal, E.A., 2005. Speed and size of the Sumatra earthquake, Nature, 434, 581–582. Tsuboi, S., 2000. Application of Mwp to tsunami earthquake, Geophys. Res. Lett., 27, 3105–3108. Tsuboi, S., Abe, K., Takano, K. & Yamanaka, Y., 1995. Rapid determination of Mw from broadband P waveforms, Bull. Seism. Soc. Am., 85, 606– 613. Tsuboi, S., Whitmore, P.M. & Sokolowski, T.J., 1999. Application of Mwp to deep and teleseismic earthquakes, Bull. Seism. Soc. Am., 89, 1345– 1351. UNESCO, 2005. International Coordination Meeting for the Development of a TsunamiWarning and Mitigation System for the Indian Ocean within a Global Framework, IOC Workshop Report 196, 103 pp. Utsu, T., 2002. Relationships between magnitude scales, in International Handbook of Earthquake and Engineering Seismology, pp. 733–746, eds W.H.K. Lee, H. Kanamori, P.C. Jennings&C. Kisslinger, Academic Press, Amsterdam. Vassiliou, M.S. & Kanamori, H., 1982. The energy release in earthquakes, Bull. Seism. Soc. Am., 72, 371–387. Venkataraman, A. & Kanamori, H., 2004. Observational constraints on the fracture energy of subduction zone earthquakes, J. Geophys. Res., 109(B5), B05 302, doi: 05310.01029/02003JB002549. Weinstein, S.A. and Okal, E.A., 2005. The mantle wave magnitude Mm and the slowness parameter THETA: five years of real-time use in the context of tsunami warning, Bull. Seism. Soc. Am., 95, 779–799. Weinstein, S., McCreery, C., Hirshorn, B. & Whitmore, P., 2005. Comment on “a strategy to rapidly determine the magnitude of great earthquakes” by W. Menke and V. Levin, Eos Trans. AGU, 86, 263, doi: 10.1029/2005EO280005. Zeng,Y., Aki, K.&Teng, T.-L., 1993. Mapping of the high-frequency source radiation for the Loma Prieta earthquake, California, J. Geophys., Res., 98, 11 981–11 993.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorLomax, A.en
dc.contributor.authorMichelini, A.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-7747-5990-
crisitem.author.orcid0000-0001-6716-8551-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2007_GJI_Magnitude_ed.pdfmain article531.38 kBAdobe PDF
EnergyDurationMagnitude_v2.0.pdfunformatted final version1.31 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

33
checked on Feb 10, 2021

Page view(s) 50

209
checked on Apr 17, 2024

Download(s) 10

551
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric