Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3118
DC FieldValueLanguage
dc.contributor.authorallHarris, A. J. L.; HIGP/SOEST, University of Hawai’ien
dc.contributor.authorallDehn, J.; Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanksen
dc.contributor.authorallPatrick, M.; HIGP/SOEST, University of Hawai’ien
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallRipepe, M.; Dipartimento di Scienze della Terra, Università di Firenzeen
dc.contributor.authorallLodato, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-12-12T14:58:41Zen
dc.date.available2007-12-12T14:58:41Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/3118en
dc.description.abstractA safe, easy and rapid method to calculate lava effusion rates using hand-held thermal image data was developed during June 2003 at Stromboli Volcano (Italy).We used a Forward Looking Infrared Radiometer (FLIR) to obtain images of the active lava flow field on a daily basis between May 31 and June 16, 2003. During this time the flow field geometry and size (where flows typically a few hundred meters long were emplaced on a steep slope) meant that near-vertical images of the whole flow field could be captured in a single image obtained from a helicopter hovering, at an altitude of 750 m and ∼1 km off shore.We used these images to adapt a thermally based effusion rate method, previously applied to low and high spatial resolution satellite data, to allow automated extraction of effusion rates from the hand-held thermal infrared imagery. A comparison between a thermally-derived (0.23–0.87m3 s−1) and dimensionally-derived effusion rate (0.56 m3 s−1) showed that the thermally-derived range was centered on the expected value. Over the measurement period, the mean effusion rate was 0.38±0.25 m3 s−1, which is similar to that obtained during the 1985–86 effusive eruption and the time-averaged supply rate calculated for normal (non-effusive) Strombolian activity. A short effusive pulse, reaching a peak of ∼1.2 m3 s−1, was recorded on June 3, 2003. One explanation of such a peak would be an increase in driving pressure due to an increase in the height of the magma contained in the central column.We estimate that this pulse would require the magma column to attain a height of ∼190 m above the effusive vent, which is approximately the elevation difference between the vent and the floor of the NE crater. Our approach gives an easy-to-apply method that has the potential to provide effusion rate time series with a high temporal resolution.en
dc.description.sponsorshipNSF grant EAR-0207734 United States Geological Survey Italian Civil Protectionen
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Volcanologyen
dc.relation.ispartofseries/68(2005)en
dc.subjectForward Looking InfraRed (FLIR)en
dc.subjectEffusion rateen
dc.subjectStrombolien
dc.titleLava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Strombolien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber107–117en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1007/s00445-005-0425-7en
dc.relation.referencesAllard P, Carbonnelle J, Metrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330 Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107– 123 Calvari S, Andronico D, Burton MR, Dehn J, Garf`ı G, Harris A, Lodato L, Patrick M, Spampinato L (2005) Volcanic processes during the 2002–2003 flank eruption at Stromboli volcano detected through monitoring with a handheld thermal camera. J Geophys Res Crisp J, Baloga S (1990) A method for estimating eruption rates of planetary lava flows. Icarus 85:512–515 Dehn J, Patrick MR, Harris AJL, Ripepe M, Calvari S (2004) Handheld infrared imaging of strombolian eruptions. Bull Volcanol: in review Francalanci L, Tommasini S, Conticelli S, Davies GR (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Plan Sci Lett 167:1–69 Harris AJL, Neri M (2002) Volumetric observations during paroxysmal eruptions at Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? J Volcanol Geotherm Res 116:79– 95 Harris AJL, Stevenson DS (1997) Magma budgets and steady-state activity of Vulcano and Stromboli volcanoes. Geophys Res Lett 24:1043–1046 Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997) Low cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64 Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of Lava Effusion Rates from Landsat TM Data. Bull Volcanol 60:52–71 Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–269 Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Phil Mag 49:793–807 Kauahikaua J,ManganM, Heliker C, Mattox T (1996) A quantitative look at the demise of a basaltic vent: the death of Kupianaha, Kilauea Volcano, Hawai’i. Bull Volcanol 57:641–648 Kneizys FX, Shettle EP, Gallery WO, Chetwynd JH, Abreu LW, Selby JEA, Clough SA, Fenn RW (1983) Atmospheric transmittance/ radiance: computer code LOWTRAN 6. Air Force Geophysics Laboratory, Environmental Research Paper 846, Hanscom AFB, MA Keszthelyi L, Denlinger R (1996) The initial cooling of pahoehoe flow lobes. Bull Volcanol 58:5–28 Keszthelyi L, Harris AJL, Dehn J (2003) Observations of the effect of wind on the cooling of active lava flows. J Geophys Res 30:SDE 4-1–SDE 4-4 Marchetti E, Ichahara M, Ripepe M (2004) Propagation of acoustic waves in a viscoelastic two-phase system: influence of gas bubble concentration. J Volcanol Geotherm Res: in press Nappi G, Renzulli A (1989) Stromboli. Bull Volcanic Eruptions 26:1–3 Ripepe M, Gordeev E (1999) Gas bubble dynamics model for shallow volcanic tremor at Stromboli. J Geophys Res 104:10639–10654 Patrick M (2002) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: comparison with AVHRR thermal imagery. MSc thesis University of Alaska Fairbanks: 141 p Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45 RossiM, SbranaA(1988) Stromboli. BullVolcanic Eruptions 25:7–8 Shaw HR (1969) Rheology of basalt in the melting range. J Petrol 10:510–35 Sutton AJ, Elias T, Kauahikaua J (2003) Lava-effusion rates for the Pu’u ‘ ¨ O’¨o-K¨upaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. USGS Prof paper 1676:137–148 Wright R, Blake S, Harris A, Rothery D (2001) A simple explanation for the space-based calculation of lava eruptions rates. Earth Planetary Sci Lett 192:223–233 Wooster MJ, Wright R, Blake S, Rothery DA (1997) Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava flow. Geophys Res Lett 24(24):3277–3280en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorHarris, A. J. L.en
dc.contributor.authorDehn, J.en
dc.contributor.authorPatrick, M.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorRipepe, M.en
dc.contributor.authorLodato, L.en
dc.contributor.departmentHIGP/SOEST, University of Hawai’ien
dc.contributor.departmentHIGP/SOEST, University of Hawai’ien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Firenzeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptHawaii Institute of Geophysics and Planetology and School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0003-3599-962X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Harris et al 2005b.pdfmain article473.25 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

64
checked on Feb 10, 2021

Page view(s)

273
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric