Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3114
DC FieldValueLanguage
dc.contributor.authorallGori, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallDramis, F.; Dipartimento di Scienze Geologiche, Università “Roma Tre”, Roma, Italyen
dc.contributor.authorallGaladini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallMessina, P.; C.N.R. Istituto di Geologia Ambientale e Geoingegneria, Roma, Italyen
dc.date.accessioned2007-12-12T14:48:36Zen
dc.date.available2007-12-12T14:48:36Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/3114en
dc.description.abstractThe different geomorphological characteristics of the footwall and hanging wall sectors of Apennine active normal faults usually prevent the possibility to correlate synchronous geomorphological features across the fault and, therefore, to define the kinematic parameters. This is particularly evident in case of faults active during the Late Pleistocene – Holocene, evolving along mountain fronts in piedmont areas. Therefore, the use of geomorphological features such as paleolandscapes and chronologically constrained deposits of pre-Late Quaternary age can be useful for the definition of kinematic parameters. Following this approach we have analysed three cases in Central Apennines: 1) the Magnola Mts. normal fault, 2) the Mt. Morrone normal fault system and 3) the Norcia basin fault system. As for the cases at points 1 and 2, isochronous sub-horizontal breccias have been detected both in the hanging wall and in the footwall sectors of the Magnola Mts. fault and of the western fault segment of the Mt. Morrone fault system (made of two parallel fault branches) laying on an almost flat paleolandscape of older age, characterized by relict surfaces gently dipping towards the basin bottom, whose formation occurred close to the local base level. Since BOSI et alii (2003) attributed this kind of breccias to the Early Pleistocene, we can hypothesize that the formation of the fault-related slopes occurred subsequently to the Early Pleistocene. The vertical offset affecting the breccias can be quantified in 650 m for the Magnola Mts. fault and in 350 m for the Mt. Morrone western fault segment. Therefore, assuming that a reliable age for these deposits is 10.2 Ma, a slip rate ranging from 0.54 to 0.81 mm/yr can be estimated for the Magnola Mts. fault and ranging between 0.30 and 0.43 mm/yr for the Mt. Morrone western fault segment. As for the Norcia basin fault system, alluvial fans attributed to the Middle Pleistocene are geomorphologically embedded in almost flat relict surfaces carved into the limestone bedrock and detectable in the highest sectors of the relief representing the eastern basin border. Considering the difference in elevation between these paleosurfaces and the present bottom of the basin (assuming that surfaces or deposits synchronous to those present in the footwall are “contained” in the succession filling the depression), a minimum vertical offset due to the fault activity following the formation of the relict surfaces can be estimated in about 900 m. Moreover, considering that these relict surfaces may have an age ranging between the Middle Pliocene (after the end of the compressive tectonic phase) and the Middle Pleistocene, a minimum vertical fault slip rate ranging between 0.25 and 1.15 mm/yr can be estimated.en
dc.language.isoEnglishen
dc.publisher.nameSocietà Geologica Italianaen
dc.relation.ispartofBoll.Soc.Geol.It.en
dc.relation.ispartofseries2/126(2007)en
dc.subjectfault scarpsen
dc.subjectpaleolandscapeen
dc.subjectslip rateen
dc.subjectactive faultingen
dc.subjectcentral Italyen
dc.titleThe use of geomorphological markers in the footwall of active faults for kinematic evaluations: examples from the central Apenninesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber365-374en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.relation.referencesAMATO A. & CINQUE A. (1999) – Erosional surfaces of the Campano-Lucano Apennines (S. Italy): genesis, evolution and tectonic implications. Tectonophysics, 315, 251-267. BALLY A.W., BURBI L., COOPER C. & GHELARDONI R. (1989) – Foreland basins: an introduction. In: Allen P.A. & Homewood P. (Eds.), Foreland basins. Spec. Publs. Int. Ass. Sediment., 8, 3-12. BARTOLINI, C. (1980) – Su alcune superfici sommitali dell’Appennino settentrionale (prov. Di Lucca e di Pistoia). Geografia Fisica e Dinamica Quaternaria, 3, 42-60. BARTOLINI, C. (1999) – An overview of Pliocene to present-day uplift and denudation rates in the Northern Apennine. In: Smith, B.J., Whalley, W.B., Warke, P.A. (Eds.), Uplift, Erosion and Stability: Perspectives on Long-term Landscape Development. Geological Society, London, pp. 119-125. Special Publications 162. BERTINI T. & BOSI C. (1976) – Sedimenti continentali probabilmente pliocenici nella valle del Salto e nella conca del Fucino (Rieti-L’Aquila). Boll. Soc. Geol. It., 95, 767-801. BLUMETTI A.M. (1995) – Neotectonic investigation and evidence of paleoseismicity in the epicentral area of the January-February 1703, central Italy, earthquakes. In: Serva L., Slemmons B. (Eds.), Perspectives in Paleoseismology, Special Publication-Association of Engeneering Geologists, 6, pp. 83-100. BLUMETTI A.M., COLTORTI M., DRAMIS F. & FARABOLLINI P. (1990) – Due sezioni stratigrafiche nel Pleistocene medio nella conca di Norcia; implicazioni geomorfologiche e neotettoniche. Rend Soc. Geol. It., 13, 17-26. BOCCALETTI M., CIARANFI N., COSENTINO D., DEIANA G., GELATI R., LENTINI F., MASSARI F., MORATTI G., PESCATORE T., RICCI LUCCHI F., & TORTORICI L. (1990) - Palinspastic restoration and paleogeographic reconstruction of the peri- Tyrrhenian area during the Neogene. Pal., 77, 41-50. BOENZI F. (1979) – Geomorphological features of the Lucanian Apennines. In: Panizza, M., Carton, A., Piacente, S., (Eds), Proceedings of the 15th Plenary Meeting of the IUG, Commission on Geomorphological Survey and Mapping, 177-184. BOSI C. (1978) – Relazione introduttiva al tema “Neotettonica”. Mem. Soc. Geol. It., 19, 521-534. BOSI C., CAIAZZO C., CINQUE A. & MESSINA P. (1996) – Le superfici relitte della regione fucense (Appennino centrale) ed il loro significato nella ricostruzione dell’evoluzione geologica. Il Quaternario, 9 (1), 381-386. BOSI C., GALADINI F., GIACCIO B., MESSINA P. & SPOSATO A. (2003) - Plio-Quaternary continental deposits in the latium-abruzzi apennines: the correlation of geological events across different intermontane basins. Il Quaternario, 16(1bis), 55-76. BOSI C. & MESSINA P. (1992) – Ipotesi di correlazione fra le successioni plio-pleistoceniche nell’Appennino laziale-abruzzese. In: Studi Geologici Camerti, Vol. Spec., 1991/2, 257-263, Camerino. CALAMITA F., COLTORTI M., DEIANA G., DRAMIS F. & PAMBIANCHI G., (1982) – Neotectonic evolution and geomorphology of the Cascia and Norcia depression (Umbria-Marche Apennines). Geogr. Fis. Dinam. Quat., 5, 263-276. CALAMITA F., COLTORTI M., PIERUCCINI P. & PIZZI A., (1999) – Evoluzione strutturale e morfogenesi plio-quaternaria dell’Appennino umbro-marchigiano tra il preappennino umbro e la costa adriatica. Boll. Soc. Geol. It., 118, 125-139. CAVINATO G.P. & MICCADEI E. (1995) – Active Faulting Along the Northeastern Edge of the Sulmona Basin, Central Apennines, Italy. Perspectives in Paleoseismology. CAVINATO G.P., DE RITA D., MILLI S. & ZARLENGA F. (1992) – Correlazioni tra i principali eventi tettonici, sedimentari, vulcanici ed eustatici che hanno interessato l’entroterra (conche intrappenniniche) e il margine costiero laziale durante il Pliocene superiore ed il Pleistocene. In: “Evoluzione geomorfologica e tettonica quaternaria dell’Appennino centro-meridionale”, a cura di Farabollini P., Invernizzi C., Pizzi A., Cavinato G.P. & Miccadei E., Studi Geol. Camerti, vol.spec. 1992/1, 165-174, Camerino. CENTAMORE E., DRAMIS F., FUBELLI G., MOLIN P. & NISIO P. (2003) – Elements to correlate marine and continental sedimentary successions in the context of the neotectonic evolution of the central Apennines. Il Quaternario, 16 (1bis), 77-87. CICCACCI S., D’ALESSANDRO L., DRAMIS F., FREDI P. & PAMBIANCHI G. (1985) – Geomorphological and neotectonic evolution of the Umbria-Marche ridge, northern sector. Studi Geologici Camerti, 10, 33-38. CINQUE A. (1992) – Distribuzione spazio-temporale dei movimenti tettonici verticali nell’Appennino campano-lucano: alcune riflessioni. Studi Geologici Camerti, vol. spec. 1992/1, 33-38. CIPOLLARI P. & COSENTINO D. (1992) – La linea Olevano – Antrodoco: contributo della biostratigrafia alla sua caratterizzazione cinematica. Studi geol. Camerti, vol. spec. 1991/2, 143-149. CIPOLLARI P., COSENTINO D. & GLIOZZI E., 1999 – Extensional- and compressional-related basins in central Italy during the Messinian Lago-Mare event, Tectonophysics, 315, 163-185. CNR-PFG, 1987. Neotectonic Map of Italy. Quaderni de La Ricerca Scientifica, p.114. COLTORTI M.& PIERUCCINI P. (1997) – The southeastern Tiber basin (Spoleo central Italy): geology and stratigraphy of plio-pleistocene sediments. Il Quaternario, 10, 159-180. COLTORTI M.& PIERUCCINI P. (2000) – A late lower Pliocene planation surface across the Italian Peninsula: a Key tool in neotectonic studies. Journal of Geodynamics, 29, 323-388. D’AGOSTINO N., JACKSON J.A., DRAMIS F. & FUNICIELLO R. (2001) - Interactions between mantle upwelling, drainage evolution and active normal faulting : an example from the central Appennines (Italy). Geophysical Journal International, 147, 475-479. DOGLIONI C. (1995) – Geological remarks on the relationships between extension and convergent geodynamic settings. Tectonophysics, 252, 253-267. DRAMIS F. (1992) – Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. Studi Geologici Camerti., vol. spec. 1992/1, 9-15. DRAMIS F. (1993) – Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. In: “Evoluzione geomorfologica e tettonica quaternaria dell’Appennino centro-meridionale”, a cura di Farabollini P., Invernizzi C., Pizzi A., Cavinato G.P. & Miccadei E., Studi geol. Camerti, vol. spec. 1992/1, 9-15, Camerino. FUBELLI G. (2004) – Evoluzione geomorfologica del versante tirrenico (Italia Centrale). Dottorato di Ricerca in Geodinamica, XVI Ciclo, Università degli Studi Roma Tre. GALADINI F. & MESSINA. P. (1994) – Plio-Quaternary tectonics of the Fucino basin and surrounding areas (central Italy). Giorn. Geol., 56, 73-99. GALADINI F. & GALLI P. (2000) – Active tectonics in the Central Appennines (Italy) – Input Data for Seismic Hazard Assessment. Natural Hazards, 22, 225-270. GALADINI F., MESSINA P., GIACCIO B. & SPOSATO A. (2003) – Early uplift history of the Abruzzi Apennines (central Italy): available geomorphological constraints. Quaternary International, 101/102, 125-135. GALLI P., GALADINI F. & CALZONI F. (2005) – Surface faulting in Norcia (central Italy): a “paleoseismological perspective”. Tectonophysics, 403, 117-130. MARCHETTI G., PEROTTI C. & VERCESI P.L. (1979) – Possible significance of the paleosurfaces with reference to the geomorphological Plio-Quaternary evolution of the Piacenza Apennines. In: Panizza, M., Carton, A., Piacente, S., (Eds), Proceedings of the 15th Plenary Meeting of the IUG, Commission on Geomorphological Survey and Mapping, 151-164. MELETTI C., PATACCA E. & SCANDONE P. (1995) – Il sistema compressione-distensione in Appennino. In: Bonari G., De Vivo B., Gasparini P., Vallario A. (eds), “Cinquanta anni di attività didattica e scientifica del Prof. Felice Ippolito”, Bologna, 361-370. MICCADEI E., BARBERI R. & CAVINATO G.P. (1998) – La geologia quaternaria della conca di Sulmona (Abruzzo, Italia centrale). Geol. Rom. Vol. XXXIV. MOSTARDINI F. & MERLINI S. (1988) – Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. It., 35 (1986), 177-202. NESCI O., MORETTI E., LALLI R.P. (1982) – Ricerche preliminary sulle paleosuperfici sommitali delle Marche settentrionali. Contributi conclusivi per la realizzazione della Carta Neotettonica d’Italia. CNR-PFG, 506, 67-72. PALUMBO L., BENEDETTI L., BOURLÈS D., CINQUE A., FINKEL R. (2004) – Slip history of the Magnola fault (Apennines, Central Italy) from 36Cl surface exposure dating: evidence for strong earthquakes over the Holocene. Earth and Planetary Science Letters, 225, 163-176. PAROTTO M. & PRATURLON A. (1975) – Geological summary of the Central Apennines. In: Structural model of Italy. CNR, Quad. Ric. Sc., 90, 257-311. PATACCA E., SARTORI R. & SCANDONE P. (1990) – Thyrrenian basin and apenninic arcs: kinematic relations since late Tortonian times, Mem. Soc. Geol. It., 45, 425-451. PIZZI A. & SCISCIANI V. (2000) – Methods for determining the Pleistocene-Holocene component of displacement on active faults reactivating pre-Quaternary structures: examples from the Central Apennines (Italy). Journal of Geodynamics, 29, 445-457. PIZZI A., CALAMITA F., COLTORTI M. & PIERUCCINI P. (2002) – Quaternary normal faults, intermontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy): contribution of neotectonic analysis to seismic hazard assessment. Boll. Soc. Geol. It., Volume Speciale n. 1 (2002), 923-929. RASSE M. (1995) – L’Apennin ombrien. Morphogenese d’une dorsale recente. Tesi di Dottorato, Università di Paris IV, Sorbonne, Institut de Geographie, 538 pp. SESTINI A. (1981) - Un’antica superfice d’erosione nei Monti del Chianti. Rivista Geografica Italiana, 88, 214-220. VITTORI E., CAVINATO G.P., MICCADEI E. (1995) – Active faulting along the northeastern edge of the Sulmona basin, central Appennines, Italy. In “Perspective in paleoseismology” a cura di Serva L. E Burton Slemmons D. Ass. of Engin. Geol. Special Pubblication, 6, 115-126, sudbury. WORKING GROUP CPTI, (2004) - Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04). INGV, Bologna, Italy. http://emidius.mi.ingv.it/CPTI/ (Last check of the availability: June, 2006).en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGori, S.en
dc.contributor.authorDramis, F.en
dc.contributor.authorGaladini, F.en
dc.contributor.authorMessina, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università “Roma Tre”, Roma, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentC.N.R. Istituto di Geologia Ambientale e Geoingegneria, Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto di Geologia Ambientale e Geoingegneria, CNR-
crisitem.author.orcid0000-0002-7074-3059-
crisitem.author.orcid0000-0001-5931-2656-
crisitem.author.orcid0000-0002-3095-4724-
crisitem.author.orcid0000-0002-7757-1448-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Gori et al., 2007.pdfMain article5.3 MBAdobe PDF
Show simple item record

Page view(s) 50

217
checked on Apr 17, 2024

Download(s) 50

64
checked on Apr 17, 2024

Google ScholarTM

Check