Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3105
DC FieldValueLanguage
dc.contributor.authorallBurton, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallAllard, P.; CNRS Franceen
dc.contributor.authorallMurè, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallLa Spina, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-12-12T14:02:50Zen
dc.date.available2007-12-12T14:02:50Zen
dc.date.issued2007-07-13en
dc.identifier.urihttp://hdl.handle.net/2122/3105en
dc.description.abstractStrombolian-type eruptive activity, common at many volcanoes, consists of regular explosions driven by the bursting of gas slugs that rise faster than surrounding magma. Explosion quakes associated with this activity are usually localized at shallow depth; however, where and how slugs actually form remain poorly constrained. We used spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano (Italy) to demonstrate that gas slugs originate from as deep as the volcano-crust interface (~3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence. The observed decoupling between deep slug genesis and shallow (~250-meter) explosion quakes may be a common feature of strombolian activity, determined by the geometry of plumbing systems.en
dc.language.isoEnglishen
dc.publisher.nameAAASen
dc.relation.ispartofScienceen
dc.relation.ispartofseries/317 (2007)en
dc.subjectStrombolian activityen
dc.subjectFTIRen
dc.titleMagmatic Gas Composition Reveals the Source Depth of Slug-Driven Strombolian Explosive Activityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber227-230en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1126/science.1141900en
dc.relation.references1. R. S. J. Sparks, J. Volcanol. Geotherm. Res. 3, 1 (1978). 2. L. Wilson, J. W. Head III, J. Geophys. Res. 86, 2971 (1981). 3. E. A. Parfitt, J. Volcanol. Geotherm. Res. 134, 77 (2004). 4. C. Jaupart, S. Vergniolle, Nature 331, 58 (1988). 5. C. Jaupart, S. Vergniolle, J. Fluid Mech. 203, 347 (1989). 6. B. Chouet et al., J. Geophys. Res. 102, 15129 (1997). 7. B. Chouet et al., J. Geophys. Res. 108, 2019 (2003). 8. M. Ripepe, S. Diliberto, M. D. Schiava, J. Geophys. Res. 106, 8713 (2001). 9. C. A. Rowe, R. C. Aster, P. R. Kyle, R. R. Dibble, J. W. Schlue, J. Volcanol. Geotherm. Res. 101, 105 (2000). 10. M. T. Hagerty, M. Protti, S. Y. Schwartz, M. A. Garces, J. Volcanol. Geotherm. Res. 101, 27 (2000). 11. S. Vergniolle, G. Brandeis, J.-C. Marechal, J. Geophys. Res. 101, 20449 (1996). 12. M. Ripepe, A. J. L. Harris, R. Carniel, J. Volcanol. Geotherm. Res. 118, 285 (2002). 13. N. Métrich, A. Bertagnini, P. Landi, M. Rosi, J. Petrol. 42, 1471 (2001). 14. A. Bertagnini, N. Métrich, P. Landi, M. Rosi, J. Geophys. Res. 108, 2336 (2003). 15. P. Landi, N. Métrich, A. Bertagnini, M. Rosi, Contrib. Mineral. Petrol. 147, 213 (2004). 16. P. Allard, J. Carbonnelle, N. Métrich, H. Loyer, P. Zettwoog, Nature 368, 326 (1994). 17. P. Allard et al., Geophys. Res. Lett. 27, 1207 (2000). 18. F. Barberi, M. Rosi, A. Sodi, Acta Vulcanol. 3, 173 (1993). 19. A. Aiuppa, C. Federico, Geophys. Res. Lett. 31, L14607 (2004). 20. T. Mori et al., Earth Plan. Sci. Lett. 134, 219 (1995). 21. P. W. Francis, M. Burton, C. Oppenheimer, Nature 396, 567 (1998). 22. P. Allard, M. Burton, F. Muré, Nature 433, 407 (2005). 23. C. Oppenheimer, P. Bani, J. Calkins, M. Burton, G. M. Sawyer, Appl. Phys. B 85, 453 (2006). 24. Data were collected with a Bruker OPAG-22 FTIR spectrometer, working at 0.5 cm−1 resolution. Single-scan, double-sided interferograms were collected every ~4 s and were Fourier transformed offline with the use of Norton-Beer medium apodization. Spectral analysis was performed with a nonlinear least-squares fitting program and an adapted forward model based around the Reference Forward Model (33). The different physical conditions of atmospheric and volcanic gases were taken in account using a two-layer atmospheric model. Volcanic gas temperature was retrieved by fitting this parameter during analysis of the SO2 n1 + n3 combination band at 2500 cm−1, whose rotational line envelope is highly temperature dependent. Source temperatures were determined from the ratio of the observed signal at 4400 and 4460 cm−1 and fitting to a Planck curve. Quiescent degassing compositions between the explosions were determined with the use of linear fits to correlation plots of volcanic gas amounts. 25. P. Allard, abstract GMPV7-8044, presented at the European Geophysical Union General Assembly, Vienna, Austria, 16 to 20 April 2007. 26. S. Newman, J.B. Lowenstern, Comput. Geosci. 28, 597 (2002). 27. M. Chaigneau, C. R. Acad. Sci. Paris 261, 2241 (1965). 28. M. L. Carapezza, C. Federico, J. Volcanol. Geotherm. Res. 95, 227 (2000). 29. M. Burton, H. Mader, M. Polacci, P. Allard, Eos 86 (Fall Meeting Suppl.), 52 (abstr. V13G-01) (2005). 30. H. Langer, S. Falsaperla, Pure Appl. Geophys. 147, 57 (1996). 31. M. Ripepe et al., Geology 33, 273 (2005). 32. M. R. James, S. J. Lane, B. A. Chouet, J. Geophys. Res. 111, B05201 (2006). 33. A. Dudhia, University of Oxford, www.atm.ox.ac.uk/RFM. 34. N. Métrich, R. Clocchiatti, Geochim. Cosmochim. Acta 60, 4151 (1996).en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBurton, M.en
dc.contributor.authorAllard, P.en
dc.contributor.authorMurè, F.en
dc.contributor.authorLa Spina, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentCNRS Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-6588-7560-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.orcid0000-0003-4272-7921-
crisitem.author.orcid0000-0002-5007-613X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Stromboli Science 2007.pdfArticle246.95 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

232
checked on Feb 10, 2021

Page view(s) 50

440
checked on Apr 17, 2024

Download(s)

21
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric