Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3015
DC FieldValueLanguage
dc.contributor.authorallActon, G.; University of California, Davis,en
dc.contributor.authorallYin, Q.-Z.; University of California, Davis,en
dc.contributor.authorallVerosuv, K. L.; University of California, Davis,en
dc.contributor.authorallJovane, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRoth, A.; University of California, Davis,en
dc.contributor.authorallJacobsen, B.; University of California, Davis,en
dc.contributor.authorallDenton, S. E.; American Museum of Natural History, New York,en
dc.date.accessioned2007-12-07T07:49:15Zen
dc.date.available2007-12-07T07:49:15Zen
dc.date.issued2007-03en
dc.identifier.urihttp://hdl.handle.net/2122/3015en
dc.description.abstractChondrules in chondritic meteorites record the earliest stages of formation of the solar system, potentially providing information about the magnitude of early magnetic fields and early physical and chemical conditions. Using first-order reversal curves (FORCs), we map the coercivity distributions and interactions of 32 chondrules from the Allende, Karoonda, and Bjurbole meteorites. Distinctly different distributions and interactions exist for the three meteorites. The coercivity distributions are lognormal shaped, with Bjurbole distributions being bimodal or trimodal. The highest-coercivity mode in the Bjurbole chondrules is derived from tetrataenite, which interacts strongly with the lower-coercivity grains in a manner unlike that seen in terrestrial rocks. Such strong interactions have the potential to bias paleointensity estimates. Moreover, because a significant portion of the coercivity distributions for most of the chondrules is <10 mT, low-coercivity magnetic overprints are common. Therefore paleointensities based on the REM method, which rely on ratios of the natural remanent magnetization (NRM) to the saturation isothermal remanent magnetization (IRM) without magnetic cleaning, will probably be biased. The paleointensity bias is found to be about an order of magnitude for most chondrules with low-coercivity overprints. Paleointensity estimates based on a method we call REMc, which uses NRM/IRM ratios after magnetic cleaning, avoid this overprinting bias. Allende chondrules, which are the most pristine and possibly record the paleofield of the early solar system, have a mean REMc paleointensity of 10.4 μT. Karoonda and Bjurbole chondrules, which have experienced some thermal alteration, have REMc paleointensities of 4.6 and 3.2 μT, respectively.en
dc.description.sponsorshipNSF and INGVen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/112 (2007)en
dc.subjectpaleomagnetism coercivityen
dc.subjectpaleointensityen
dc.subjectmagnetic interactionsen
dc.subjectmeteoriteen
dc.subjectChondrulesen
dc.subjectFORC diagramsen
dc.titleMicromagnetic coercivity distributions and interactions in chondrules with implications for paleointensities of the early solar systemen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB03S90en
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physicsen
dc.identifier.doi10.1029/2006JB004655en
dc.relation.referencesActon, G., K. L. Verosub, A. Roth, and D. Linderholm (2005), Coercivity distributions and magnetic particle interactions from first-order reversal curves (FORCs): Examples from natural materials and software for data analysis, Eos Trans. AGU, 86(52), Fall Meeting Suppl., Abstract GP13A- 0044. Antretter, M., and M. Fuller (2002), Paleomagnetism and rock magnetism of Martian meteorite ALH 84001, Phys. Chem. Earth, Parts ABC, 27, 1299– 1303. Banerjee, S. K., and R. B. Hargraves (1972), Natural remanent magnetizations of carbonaceous chondrites and the magnetic field in the early solar system, Earth Planet. Sci. Lett., 17, 110–119. Brecher, A. (1977), Meteoritic magnetism: Implications for parent bodies of origin, in Comets, Asteroid and Meteorites, edited by A. H. Delsemme, pp. 415– 427, Univ. Toledo Press, Toledo, Ohio. Brecher, A., and G. Arrhenius (1974), The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties, J. Geophys. Res., 79, 2081–2106. Brecher, A., and L. Leung (1979), Ancient magnetic field determinations on selected chondritic meteorites, Phys. Earth Planet. Inter., 20, 361– 378. Brecher, A., and R. P. Ranganayaki (1975), Paleomagnetic systematics of ordinary chondrites, Earth Planet. Sci. Lett., 25, 57–67. Brenker, F. E., A. N. Krot, and P. H. Warren (2002), Evidence for a high temperature episode during multistage alteration of Allende dark inclusions, Meteorit. Planet. Sci., 37, suppl., 24. Butler, R. F. (1972), Natural remanent magnetization and thermomagnetic properties of the Allende meteorite, Earth Planet. Sci. Lett., 17, 120– 128. Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams (2003), Micromagnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett., 213, 375– 390. Chen, A. P., R. Egli, and B. Moskowitz (2005), A FORC in the road?, IRM Q., 15(3), 1– 11. Cisowski, S. M., and M. Fuller (1986), Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon, in Origin of the Moon: Proceedings of the Conference, Kona, HI, October 13– 16, 1984, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, pp. 411 –424, Lunar and Planet. Inst., Houston, Tex. Clarke, R. S., Jr., and E. R. D. Scott (1980), Tetrataenite; ordered FeNi, a new mineral in meteorites, Am. Mineral., 65, 624– 630. Collinson, D. W. (1987), Magnetic properties of the Olivenza meteorite— Possible implications for its evolution and an early solar system, Earth Planet. Sci. Lett., 84, 369– 380. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260– 267. Donati, J.-F., F. Paletou, J. Bouvier, and J. Ferreira (2005), Direct detection of a magnetic field in the innermost regions of an accretion disk, Nature, 438, 466– 469. Dunlop, D. J. and O¨ . O¨ zdemir (1997), Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York. Dunlop, D. J., B. Zhang, and O¨ . O¨ zdemir (2005), Linear and nonlinear Thellier paleointensity behavior of natural minerals, J. Geophys. Res., 110, B01103, doi:10.1029/2004JB003095. Ebel, D. S., M. L. Rivers, and M. K. Weisberg (2007), Meteorite 3-dimensional synchrotron micro-tomography: Methods and applications, Meteorit. Planet. Sci., in press. Egli, R. (2004), Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions, Phys. Chem. Earth, Parts ABC, 29, 851– 867. Ferreira, J. (1997), Magnetically-driven jets from Keplerian accretion disks, Astron. Astrophys., 319, 340– 359. Funaki, M., T. Nagata, and K. Momose (1981), Natural remanent magnetizations of chondrules, metallic grains and matrix of an Antarctic chondrite, ALH-769, Mem. Nat. Inst. Polar Res. Spec. Issue, 20, 300–315. Gattacceca, J., and P. Rochette (2004), Toward a robust normalized magnetic paleointensity method applied to meteorites, Earth Planet. Sci. Lett., 227, 377–393. Herndon, J. M., M. W. Rowe, E. E. Larson, and D. E. Watson (1976), Thermomagnetic analysis of meteorites; 3, C3 and C4 chondrites, Earth Planet. Sci. Lett., 29, 283–290. Joung, M. K. R., M.-M. M. Low, and D. Ebel (2004), Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence, Astrophys. J., 606, 532–541. Kletetschka, G., T. Kohout, and P. Wasilewski (2003), Magnetic remanence in the Murchison meteorite, Meteorit. Planet. Sci., 38, 399– 405. Kletetschka, G., M. H. Acuna, T. Kohout, P. J. Wasilewski, and J. E. P. Connerney (2004), An empirical scaling law for acquisition of thermoremanent magnetization, Earth Planet. Sci. Lett., 226, 521– 528. Kletetschka, G., T. Kohout, P. J. Wasilewski, and M. Fuller (2005), Recognition of thermal remanent magnetization in rocks and meteorites, paper presented at 10th Scientific Assembly of the International Association of Geomagnetism and Aeronomy, Toulouse, France. Kletetschka, G., M. D. Fuller, T. Kohout, P. J. Wasilewski, E. Herrero- Bervera, N. F. Ness, and M. H. Acuna (2006), TRM in low magnetic fields: A minimum field that can be recorded by large multidomain grains, Phys. Earth Planet. Inter., 154, 290– 298. Kohout, T., G. Kletetschka, M. Kobr, P. Pruner, and P. J. Wasilewski (2004), The influence of terrestrial processes on meteorite magnetic records, Phys. Chem. Earth, Parts ABC, 29, 885– 897. Lanoix, M., and D. W. Strangway (1978), The magnetic remanence carried by Allende chondrules, Meteoritics, 13, 531–536. Lanoix, M., D. W. Strangway, and G. W. Pearce (1977), Anomalous acquisition of thermoremanence at 130C in iron and paleointensity of the Allende meteorite, Proc. Lunar Sci. Conf., 8, 689– 701. Lofgren, G. E. (1996), A dynamic crystallization model for chondrule melts, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones and E. R. D. Scott, pp. 187 – 196, Cambridge Univ. Press, New York. Meibom, A., S. J. Desch, A. N. Krot, J. N. Cuzzi, M. I. Petaev, L. Wilson, and K. Keil (2000), Large-scale thermal events in the solar nebula; evidence from Fe, Ni metal grains in primitive meteorites, Science, 288, 839–841. Morden, S. J. (1992), The anomalous demagnetization behaviour of chondritic meteorites, Phys. Earth Planet. Inter., 71, 189– 204. Morden, S. J., and D. W. Collinson (1992), The implications of the magnetism of ordinary chondrite meteorites, Earth Planet. Sci. Lett., 109, 185–205. Muxworthy, A. R., and D. J. Dunlop (2002), First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature, Earth Planet. Sci. Lett., 203, 369– 382. Nagata, T. (1979), Meteorite magnetism and the early solar system magnetic field, Phys. Earth Planet. Inter., 20, 324–341. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667. Pike, C. R., A. P. Roberts, M. J. Dekkers, and K. L. Verosub (2001a), An investigation of multi-domain hysteresis mechanisms using FORC diagrams, Phys. Earth Planet. Inter., 126, 11 –25. Pike, C. R., A. P. Roberts, and K. L. Verosub (2001b), First-order reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721–730. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461– 28,475. Rochette, P., L. Sagnotti, M. Bourot-Denise, G. Consolmagno, L. Folco, J. Gattacceca, M. L. Osete, and L. Pesonen (2003), Magnetic classification of stony meteorites; 1, Ordinary chondrites, Meteorit. Planet. Sci., 38, 251– 268. Sakurai, L. (1959), Motions of solar cosmic rays and the properties of the general magnetic field of the Sun, J. Geomagn. Geoelectr., 11, 21– 33. Scott, E. R. D., and R. S. Rajan (1981), Polycrystalline taenite and metallographic cooling rates of chondrites; reply to comments of A. W. R. Bevan and H. J. Axon, Geochim. Cosmochim. Acta, 45, 1959. Selkin, P. A., and L. Tauxe (2000), Long-term variations in palaeointensity, Phil. Trans. R. Soc. London, Ser. A, 358, 1065– 1088. Shimoda, G., N. Nakamura, M. Kimura, T. Kani, S. Nohda, and K. Yamamoto (2005), Evidence from the Rb-Sr system for 4.4 Ga alteration of chondrules in the Allende (CV3) parent body, Meteorit. Planet. Sci., 40, 1059– 1072. Shive, P. J. (1986), Suggestions for the use of SI units in magnetism, Eos Trans. AGU, 67, 25. Shu, F. H., H. Shang, and T. Lee (1996), Toward an astrophysical theory of chondrites, Science, 271, 1545–1552. Shu, F. H., H. Shang, A. E. Glassgold, and T. Lee (1997), X-rays and fluctuating X-winds from protostars, Science, 277, 1475– 1479. Stacey, F. D. (1976), Paleomagnetism of meteorites, Annu. Rev. Earth Planet. Sci., 4, 147– 157. Sugiura, N., and D. W. Strangway (1985), NRM directions around a centimeter-sized dark inclusion in Allende, Proc. Lunar Planet. Sci. Conf., 15th, J. Geophys. Res., 90, C729– C738. Sugiura, N., and D. W. Strangway (1988), Magnetic studies of meteorites, in Meteorites and the Early Solar System, edited by J. F. Kerridge and M. S. Matthews, pp. 595–615, Univ. of Ariz. Press, Tucson. Sugiura, N., M. Lanoix, and D. W. Strangway (1979), Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite, Phys. Earth Planet. Inter., 20, 342– 349. Thorpe, A. N., F. E. Senftle, and J. R. Grant (2002), Magnetic study of magnetite in the Tagish Lack meteorite, Meteorit. Planet. Sci., 37, 763– 771. Tsuchiyama, A., R. Shigeyoshi, T. Kawabata, T. Nakano, K. Uesugi, and S. Shirono (2003), Three-dimensional structures of chondrules and their high-speed rotation, Annu. Lunar Planet. Sci. Conf., 34th, Abstract A1271. Uehara, M., and N. Nakamura (2006), Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines, Earth Planet. Sci. Lett., 250, 292– 305. Valet, J. (2003), Time variations in geomagnetic intensity, Rev. Geophys., 41(1), 1004, doi:10.1029/2001RG000104. Wasilewski, P. J. (1973), Magnetic hysteresis in natural materials, Earth Planet. Sci. Lett., 20, 67– 72. Wasilewski, P. (1981a), New magnetic results from Allende C3(V), Phys. Earth Planet. Inter., 26, 134–148. Wasilewski, P. (1981b), Magnetization of small iron-nickel spheres, Phys. Earth Planet. Inter., 26, 149–161. Wasilewski, P. (1988), Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite, Phys. Earth Planet. Inter., 52, 150– 158. Wasilewski, P. J., and T. Dickinson (2000), Aspects of the validation of magnetic remanence in meteorites, Meteorit. Planet. Sci., 35, 537– 544. Wasilewski, P., M. H. Acuna, and G. Kletetschka (2002), 433 Eros: Problems with the meteorite magmatism record in attempting an asteroid match, Meteorit. Planet. Sci., 37, 937– 950. Willis, J., and J. I. Goldstein (1981), A revision of metallographic cooling rate curves for chondrites, Proc. Lunar Planet. Sci. Conf., 12, Part B, 1135–1143. Yu, Y. (2006), How accurately can the NRM/SIRM determine the ancient planetary magnetic field intensity?, Earth Planet. Sci. Lett., 250, 27– 37.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorActon, G.en
dc.contributor.authorYin, Q.-Z.en
dc.contributor.authorVerosuv, K. L.en
dc.contributor.authorJovane, L.en
dc.contributor.authorRoth, A.en
dc.contributor.authorJacobsen, B.en
dc.contributor.authorDenton, S. E.en
dc.contributor.departmentUniversity of California, Davis,en
dc.contributor.departmentUniversity of California, Davis,en
dc.contributor.departmentUniversity of California, Davis,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniversity of California, Davis,en
dc.contributor.departmentUniversity of California, Davis,en
dc.contributor.departmentAmerican Museum of Natural History, New York,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of California, Davis-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptAmerican Museum of Natural History, New York,-
crisitem.author.orcid0000-0002-3285-4022-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ActonJGR07.pdfmain article1.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

36
checked on Feb 10, 2021

Page view(s) 5

557
checked on Apr 20, 2024

Download(s) 50

109
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric