Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2955
DC FieldValueLanguage
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMarra, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCaserta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-12-04T19:41:44Zen
dc.date.available2007-12-04T19:41:44Zen
dc.date.issued2001-12en
dc.identifier.urihttp://hdl.handle.net/2122/2955en
dc.description.abstractDuring the Umbria-Marche, central Italy seismic sequence a smallaperture (200 m), four-station array was operating in the Colfiorito plain, a few kilometers away from the epicenters of the ML 5.6 and 5.8 mainshocks of 26 September 1997. The array was deployed approximately 500 m from the eastern edge of the basin. We analyze the three-component seismograms of 12 aftershocks, in a magnitude range of 2.5 to 4.1. Amplitudes of the horizontal components are systematically higher than those of the vertical component, with an average horizontal-tovertical spectral ratio of about 3 at 1 Hz. In this frequency band, earthquake-induced ground shaking is highly coherent across the array. A 1-sec running window zerolag cross-correlation algorithm is used to compute apparent velocity and backazimuth of coherent wave trains in the frequency band 0.5 to 2 Hz. Apparent velocity and backazimuth show a different behavior in the first part of the seismograms compared to the late coda. The largest amplitude waves, that is, S waves and early coda, are characterized by low apparent velocities, mostly between 400 and 1200 m/sec. This suggests that, near the rock edge, the most significant part of seismic energy propagates horizontally in the basin. Backazimuth of these low-frequency, coherent wavetrains never coincides with the array-to-source direction. The predominant backazimuth is peaked around N110", corresponding to the nearest, steep outcrop of the basin edge. The observed 1-sec coherent wave trains are interpreted as locally generated surface waves that are persistently diffracted from the nearby basin edge as long as a significant level of seismic radiation is incident to the bedrock. When the bedrock excitation decreases a much larger variability of both apparent velocity and backazimuth is observed, suggesting that, in the coda, randomly scattered waves within the basin and late arrivals of deeper origin become more important. Multipathing from the source to the site as well as multipathing within the basin are therefore interpreted as the main causes of the observed long-duration, coherent lowfrequency basin shaking.en
dc.language.isoEnglishen
dc.publisher.nameSSAen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries6/91(2001)en
dc.subjectSedimentary basinen
dc.subjectColfiorito earrthquakeen
dc.titleEdge-Diffracted 1-Sec Surface Waves Observed in a Small-Sizeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1851-1866en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.relation.referencesAmato, A., R. Azzara, C. Chiarabba, G. B. Cimini, C. Cocco, M. Di Bona, L. Margheriti, S. Mazza, F. Mele, G. Selvaggi, A. Basili, E. Boschi, F. Courboulex, A. Deschamps, S. Gaffet, G. Bittarelli, L. Chiaraluce, D. Piccinini, and M. Ripepe (1998). The Colfiorito, Umbria-Marche earthquake sequence in central Italy (Sept.–Nov., 1997): a first look to mainshocks and aftershocks, Geophys. Res. Lett. 25, 2861–2864. Bally, A. W., L. Burbi, C. Cooper, and R. Ghelardoni (1986). Balanced sections and seismic reflection profiles across the central Apennines, Mem. Soc. Geol. It. 35, 257–310. Bard, P.-Y. (1999). Microtremor measurements: a tool for site effect estimation? in The Effects of Surface Geology on Seismic Motion, K. Irikura, K. Kudo, H. Okada, and T. Sasatani (Editors), Balkema, Rotterdam, The Netherlands, 1251–1279. Buchbinder, G. G. R. (1987). P-wave deflection or off-azimuth arrivals in the Charlevoix seismic zone, Bull. Seism. Soc. Am. 77, 2152–2162. Buchbinder, G. G. R., and R. A. W. Haddon (1990). Azimuthal anomalies of short-period P-wave arrivals from Nahanni aftershocks, Northwest Territories, Canada, and effects of surface topography, Bull. Seism. Soc. Am. 80, 1272–1283. Calamita, F., G. Cello, and G. Deiana (1994). Structural styles, chronology rates of deformations, and time-space relationships in the Umbria- Marche thrust system (central Apennines, Italy), Tectonics 13, 873– 881. Cello, G., S. Mazzoli, E. Tondi, and E. Turco (1997). Active tectonics in the Central Apennines and possible implication for seismic hazard analysis in peninsular Italy, Tectonophysics 272, 43–60. Ekstrom, G., A. Morelli, E. Boschi, and A. M. Dziewonski (1998). Moment tensor analysis of the central Italy earthquake sequence of September– October 1997, Geophys. Res. Lett. 25, 1971–1974. Field, E. H., and K. Jacob (1995). A comparison and test of various site response estimation techniques, including three that are non referencesite dependent, Bull. Seism. Soc. Am. 85, 1127–1143. Field, E. H. (1996). Spectral amplification in a sediment-filled valley exhibiting clear basin-edge-induced waves, Bull. Seism. Soc. Am. 86, 991–1005. Frankel, A., S. E. Hough, P. Friberg, and R. Busby (1991). Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California, Bull. Seism. Soc. Am. 81, 1900–1922. Gaffet, S., C. Larroque, A. Deschamps, and F. Tressols (1998). A dense array experiment for the observation of waveform perturbations, Soil Dyn. Earthquake Eng. 17, 475–484. Gaffet, S., G. Cultrera, M. Dietrich, F. Courboulex, F. Marra, M. Bouchon, A. Caserta, C. Cornou, A. Deschamps, J.-P. Glot, and R. Guiguet (2000). A site effect study during the Umbria-Marche (central Italy) earthquakes, J. Seismology 4, 525–541. Gao, S., H. Liu, P. M. Davis, and L. Knopoff (1996). Localized amplification of seismic waves and correlation with damage due to Northridge earthquake, Bull. Seism. Soc. Am. 86, S209–S230. Graves, R. W., A. Pitarka, and P. G. Somerville (1998). Ground motion amplification in the Santa Monica area: effects of shallow basin edge structure, Bull. Seism. Soc. Am. 88, 1224–1242. Hatayama, K., K. Matsunami, T. Iwata, and K. Irikura (1995). Basininduced Love waves in the eastern part of the Osaka basin, J. Phys. Earth 43, 131–155. Hough, S. E., and E. H. Field (1996). On the coherence of ground motion in the San Fernando valley, Bull. Seism. Soc. Am. 86, 1724–1732. Jennings, P. C. (1983). Engineering seismology, in Earthquakes: Observation, Theory and Interpretation, Proceedings of the International School of Physics, E. Fermi, H. Kanamori, and E. Boschi (Editors), Varenna, Italy, 29 June–9 July 1982. Joyner, W. B. (1998). Strong motion from surface waves in deep sedimentary basins, in The Effects of Surface Geology on Seismic Motion, K. Irikura, K. Kudo, H. Okada, and T. Sasatani (Editors), Balkema, Rotterdam, The Netherlands, 475–482. Kawase, H., and K. Aki (1989). A study on the response of a soft basin for incident S, P, and Rayleigh waves with special reference to the long duration observed in Mexico City, Bull. Seism. Soc. Am. 79, 361–382. Kawase, H. (1996). The cause of the damage belt in Kobe: “The basinedge effect,” constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves, Seism. Res. Lett. 67, 25–34. Klein, F. W. (1989). Hypoinverse, a program for VAX computers to solve for earthquake location and magnitude, U.S. Geol. Surv. Open-File Rept. 314. Malagnini, L., P. Tricarico, A. Rovelli, R. B. Herrmann, S. Opice, G. Biella, and R. de Franco (1996). Explosion, earthquake, and ambient noise recordings in a Pliocene sediment-filled valley: inferences on seismic response properties by reference- and non-reference-site techniques, Bull. Seism. Soc. Am. 86, 670–682. Moczo, P., and P.-Y. Bard (1993). Wave diffraction, amplification anddifferential motion near strong lateral discontinuity, Bull. Seism. Soc. Am. 83, 85–106. Phillips, W. S., S. Kinoshita, and H. Fujiwara (1993). Basin-induced Love waves observed using the strong-motion array at Fuchu, Japan, Bull. Seism. Soc. Am. 83, 64–84. Pitarka, A., K. Irikura, T. Iwata, and H. Sekigucki (1998). Three-dimensional simulation of the near fault ground motion for the 1995 Hyogoken Nanbu (Kobe), Japan, earthquake, Bull. Seism. Soc. Am. 88, 428–440. Riepl, J., C. S. Oliveira, and P.-Y. Bard (1997). Spatial coherence of seismic wave fields across an alluvial valley (weak motion), J. Seismology 1, 253–268. Rovelli, A., A. Caserta, A., L. Malagnini, and F. Marra (1994). Assessment of potential strong ground motions in the city of Rome, Annali di Geofisica 37, 1745–1769. Rovelli, A., D. Molin, L. Malagnini, and A. Caserta (1995). Variability of damage pattern in Rome: combination of source and local effects, in Proceedings of the 5th International Conference on Seismic Zonation, Nice, France, 1359–1366. Sa´nchez-Sesma, F. J., S. Cha´vez-Perez, M. Sua´rez, M. A. Bravo, and L. E. Pe´rez-Rocha (1989). On the seismic response of the Valley of Mexico, Earthquake Spectra 4, 569–589. Scrivner, C. W., and D. V. Helmberger (1999). Finite-difference modeling of two after-shocks of the 1994 Northridge, California, earthquake, Bull. Seism. Soc. Am. 89, 1505–1518. Singh, K. S., E. Mena, and R. Castro (1988). Some aspects of the source characteristics and the ground motion amplifications in and near Mexico City from the acceleration data of the September, 1985, Michoacan, Mexico earthquakes, Bull. Seism. Soc. Am. 78, 451–477. Singh, K. S., and M. Ordaz (1993). On the origin of long coda observed in the lake-bed strong-motion records of Mexico City, Bull. Seism. Soc. Am. 83, 1298–1306. Spudich, P., and M. Iida (1993). The seismic coda, site effects, and scattering in alluvial valley studied using aftershocks of the 1986 North Palm Springs, California, earthquake as source arrays, Bull. Seism. Soc. Am. 83, 1721–1743. Stewart, J. P., S. W. Chang, J. D. Bray, R. B. Seed, N. Sitar, and M. F. Riemer (1995). A report on geotechnical aspects of the January 17, 1994 Northridge earthquake, Seism. Res. Lett. 66, 7–24. Tertulliani, A. (1999). Site effects as inferred from damage severity observation, Geophys. Res. Lett. 26, 1989–1992. Tertulliani, A., and F. Riguzzi (1995). Earthquakes in Rome during the past one hundred years, Annali di Geofisica 38, 581–590. Weischet, W. (1963). The distribution of the damage caused by the earthquake in Valdivia in relation to the form of the terrane, Bull. Seism. Soc. Am. 53, 1259–1262. Yuan, Y., B. Yang, and S. Huang (1992). Damage distribution and estimation of ground motion in Shidian (China) basin, in Proc. Int. Symp. Effects of Surface Geology on Seismic Motion, 25–28 March, Odawara, Japan, Vol. 1, 281–286.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRovelli, A.en
dc.contributor.authorScognamiglio, L.en
dc.contributor.authorMarra, F.en
dc.contributor.authorCaserta, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-5437-5276-
crisitem.author.orcid0000-0002-4881-9563-
crisitem.author.orcid0000-0002-3469-9644-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Rovelli_etal_bssa_2001.pdf1.1 MBAdobe PDF
Show simple item record

Page view(s)

196
checked on Mar 27, 2024

Download(s)

31
checked on Mar 27, 2024

Google ScholarTM

Check