Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2954
DC FieldValueLanguage
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHermann, R. B.; Department of Earth and Atmospheric Sciencesen
dc.contributor.authorallPino, N. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallScognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallEydogan, H.; Geophysical Engineering Department, Mining Facultyen
dc.date.accessioned2007-12-04T17:32:27Zen
dc.date.available2007-12-04T17:32:27Zen
dc.date.issued2001-12en
dc.identifier.urihttp://hdl.handle.net/2122/2954en
dc.description.abstractDistance scaling of earthquake-induced ground motion is studied in the Erzincan region, located in the eastern part of the North Anatolian Fault zone. The data set used in this study consists of 170 aftershocks of the MS ! 6.8 Erzincan earthquake of 13 March 1992, with moment magnitudes between 1.5 and 4.0. In order to empirically obtain the scaling relationships for the high-frequency S-wave motion, regressions are carried out on 352 horizontal-component short-period seismograms, all recorded within a hypocentral distance of 40 km, to empirically obtain the scaling relationships for the high-frequency S-wave motion. Peak ground velocities are measured in selected narrow-frequency bands, in the frequency range of 1.0–16.0 Hz, and are subsequently regressed to define a piecewise linear attenuation function, a set of excitation terms, and a set of site terms. Results are modeled in the framework of random vibration theory, using a bilinear geometrical spreading function, g(r), characterized by a crossover distance at 25 km: g(r)!r"1.1 is used for r ! 25 km, whereas g(r)!r"0.5 is used for larger distances. An extremely low-quality factor, Q(f ) ! 40(f /f ref)0.45, is used to describe the anelastic crustal attenuation in the region, consistently with the independent results of Akinci and Eyidogan (1996, 2000). Excitation terms are well matched by using a Brune spectral model with stress drop Dr ! 10 MPa (taken from the recent literature, Grosser et al., 1998). An effective high-frequency, distance-independent rolloff spectral parameter, jeff ! 0.02 sec, is obtained in this study. Peak ground acceleration predictions based on these parameters show a much more rapid decrease with distance than the relations usually used in Turkey, indicating that our results should only be applied to the Erzincan region itself.en
dc.description.sponsorshipThis study has been supported by Istituto Nazionale di Geofisica e Vulcanologia, INGV, Internal Project: “Attenuazione e leggi di scala nei paesi dell’area Mediterranea” (internally funded). R. B. Herrmann’s participation was supported by INGV and by the Earthquake Engineering Research Centers Program of the National Science Foundation under Award Number EEC-9701785.en
dc.language.isoEnglishen
dc.publisher.nameSSAen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries6/91(2001)en
dc.subjectattenuation lawen
dc.subjectground motion scalingen
dc.titleHigh-Frequency Ground Motion in the Erzincan Region, Turkey:Inferences from Small Earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1446-1455en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.relation.referencesAki, K. (1980). Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Interiors 21, 50–60. Aki, K., and B. Chouet (1975). Origin of coda waves; source, attenuation and scattering effects, J. Geophys. Res. 80, 3322–3342. Akinci, A., and H. Eyidogan (1996). Frequency dependent attenuation of s and coda waves in Erzincan region (Turkey), Phys. Earth Planet. Interiors 97, 109–119. Akinci, A., and H. Eyidogan (2000). Scattering and anelastic attenuation of seismic energy in the vicinity of North Anatolian Fault Zone, Eastern Turkey, Phys. Earth Planet. Interiors 122, 229–239. Ambraseys, N. N., K. A. Simpson, and J. J. Bommer (1996). Prediction of horizontal response spectra in Europe. Earthquake Eng. Struct. Dyn. 25, 371–400. Atkinson, G. M., and D. M. Boore (1995). Ground-motion relations for eastern North America, Bull. Seism. Soc. Am. 85, 17–30. Atkinson, G. M., and W. J. Silva (1997). An empirical study on earthquake source spectra, Bull. Seism. Soc. Am. 87, 97–113. Barka, A., and L. Gu¨len (1989). Complex evolution of the Erzincan Basin (eastern Turkey), J. Struct. Geol. 11, 275–283. Barka, A. A., M. N. Tokso¨z, K. Kandisky-Cade, and L. Gu¨len (1987). Segmentation, seismicity and earthquake potential of the eastern part of the North Anatolian Fault Zone, Yerbilimleri 14, 275–283. Boore, D. M. (1996). SMSIM-Fortran programs for simulating ground motion from earthquakes: version 1.0, U. S. Geol. Surv. Open-File Rept. 96-80-A, 73 pp. Boore, D. M. (1983). Stochastic simulation of high-frequency groundmotion based on seismological models of the radiated spectra, Bull. Seism. Soc. Am. 73, 1865–1894. Boore, D. M., and W. B. Joyner (1991). Estimation of ground motion at deep-soil sites in Eastern North America, Bull. Seism. Soc. Am. 81, 2167–2185. Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work, Seism. Res. Lett. 68, no. 1, 128–153. Bouchon, M. (1981a). The motion of the ground during an earthquake. 1. The case of a strike slip fault, J. Geophys. Res. 85, 356–366. Bouchon, M. (1981b). The motion of the ground during an earthquake. 2. The case of a dip slip fault, J. Geophys. Res. 85, 367–375. Campbell, K. W. (1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak velocity, and pseudo-absolute acceleration response spectra, Seism. Res. Lett. 68, no. 1, 154–179. Cartwright, D. E., and M. S. Longuet-Higgins (1956). The statistical distribution of the maxima of a random function, Proc. R. Soc. London A 237, 212–232. Cisternas, A., A. Philip, L. Dorbath, H. Eyidogan, and A. Barka (1992). The Erzincan earthquake of March 13, 1992. Was the North Anatolian Fault the only active one? in Program and Abstracts, XXIII General Assembly of the European Seismological Commission, Prague, 7–12 September 1992. Eyidogan, H., and A. Akinci (1999). Source spectrum characteristics of the after-shocks of 13 March 1992 Erzincan earthquake, Eastern Turkey, J. Seism. 3, no. 4, 363–373. Frankel, A. D., and L. Wennerberg (1987). Energy flux model of seismic coda: separation of scattering and intrinsic attenuation, Bull. Seism. Soc. Am. 77, 1223–1251. Fuenzalida, H., L. Dorbath, A. Cisternas, L. Rivera, H. Haessler, H. Philip, H. Eyidogan, and A. A. Barka (1997). Source mechanism of the 1992 Erzincan earthquake, from detailed aftershock analysis and broadband body wave inversion: tectonics of the Erzincan basin and evidences of fault decoupling on the North Anatolian Fault, Geophys. Int. J. 129, 1–28. Grosser, H., M. Baumbach, H. Berchemer, B. Baier, A. Karahan, H. Schelle, F. Kru¨ger, A. Paulat, G. Michel, R. Demirtas, S. Gencoglu, and R. Ylmaz (1998). The Erzincan earthquake (Ms ! 6.8) of March 13, 1992 and its aftershock sequence, Pure Appl. Geophys. 152, 465– 505. GSHAP (1999). The Global Seismic Hazard Assessment Program (1992– 1999), Summary Volume, Domenico Giardini (Editor), Ann. Geofis. 42, 6. Harmsen, S. C. (1977a). Determination of site amplification in the Los Angeles urban area from inversion of strong-motion records, Bull. Seism. Soc. Am. 87, 866–997. Harmsen, S. C. (1997b). Estimating the diminution of shear-wave amplitude with distance: application to the Los Angeles, California, urban, area, Bull. Seism. Soc. Am. 87, 888–903. Hempton, M. R., and L. A. Dunne (1984). Sedimentation in pull-apart basins: active examples in Eastern Turkey, J. Geol. 92, 513–530. Hoshiba, M., H. Sato, and M. Fehler (1991). Numerical basis of the separation of scattering and intrinsic absorbtion from full seismogram envelope a Monte-Carlo simulation of multiple isotropic scattering, Meteorol. Geophys. 42, 65–91. Jeon, Y. S. (2000). High frequency earthquake ground motion scaling in Utah, Master’s Thesis, Saint Louis University, Missouri. Keilis-Borok, V. I. (1959). On the estimation of the displacement in an earthquake source and of source dimensions, Ann. Geofis. 12, 205– 214. Ketin, I. (1976). San Andreas ve Kuzey Anadolu faylari arasinda bir karsilastirma, Turkiye Jeoloji Kurumu Bulteni 19, 149–154 (in Turkish). Kramer, L. S. (1996). Geotechnical Earthquake Engineering, Prentice Hall, New Jersey, 653 pp. Malagnini, L., A., Akinci, R. B. Herrmann, N. A. Pino, and L. Scognamiglio (2001). Characteristic of the ground motion in Northeastern Italy, Seismological Society of America 96th Annual Meeting, San Francisco, USA, Seism. Res. Lett. 72, no. 2, 282. Malagnini, L., R. B. Herrmann, and M. Di Bona (2000a). Ground motion scaling in the Apennines (Italy), Bull. Seism. Soc. Am. 90, 1062–1081. Malagnini, L., R. B. Herrmann, and K. Koch (2000b). Regional ground motion in scaling in Central Europe, Bull. Seism. Soc. Am. 90, 1052– 1061. Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and excitation of three-component ground motion in Southern California, Bull. Seism. Soc. Am. 89, 888–902. Sadigh, K. (1997). Attenuation relationships for shallow crustal earthquakes based on California strong motion data, Seism. Res. Lett. 68, no. 1, 180–189. Toro, G. R., and R. K. McGuire (1987). An investigation into earthquake ground motion characteristics in eastern North America, Bull. Seism. Soc. Am. 77, 468–489.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorAkinci, A.en
dc.contributor.authorMalagnini, L.en
dc.contributor.authorHermann, R. B.en
dc.contributor.authorPino, N. A.en
dc.contributor.authorScognamiglio, L.en
dc.contributor.authorEydogan, H.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth and Atmospheric Sciencesen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentGeophysical Engineering Department, Mining Facultyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth and Atmospheric Sciences-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstanbul Teknik U¨ niversitesi, Maden Faku¨ltesi, Jeofizik Muhendisligi Bolumu-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.orcid0000-0003-1092-7152-
crisitem.author.orcid0000-0002-5437-5276-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Akinci_etal_bssa_2001.pdf676.68 kBAdobe PDF
Show simple item record

Page view(s) 50

211
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check