Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2953
DC FieldValueLanguage
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHermann, R. B.; Department of Earth and Atmospheric Sciencesen
dc.contributor.authorallPino, N. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallScognamiglio, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2007-12-04T17:00:30Zen
dc.date.available2007-12-04T17:00:30Zen
dc.date.issued2002-08en
dc.identifier.urihttp://hdl.handle.net/2122/2953en
dc.description.abstractA large data set of ground-velocity time histories from earthquakes that occurred in Friuli-Venezia Giulia (northeastern Italy) was used to define regional predictive relationships for ground motion, in the 0.25- to 14.0-Hz frequency band. The bulk of the data set was provided by the seismic network run by Centro Ricerche Sismologiche (CRS), a department of the Istituto Nazionale di Oceanografia e Geofisica (OGS). A collection of 17,238 selected recordings from 1753 earthquakes was compiled for the years 1995–1998, with magnitudes ranging from Mw !1 to 5.6. Ninety-six three-component strong-motion waveforms belonging to the largest events of the 1976–1977 Friuli seismic sequence were also taken from the ENEAENEL accelerogram database and included in our data set. For the strongest event, which occurred on 6 May 1976 at 20:00 local time, an average local magnitude ML 6.6 was computed by Bonamassa and Rovelli (1986). The inclusion of a large number of acceleration time histories from this earthquake and six others, from magnitudes from Mw 5.2 to magnitude Ms 6.1 (three of them of Ms !6.0), extends the validity of the predictive relationships proposed in this study up to the highest magnitude ever recorded in the region. A total of 10,256 vertical-component and 6982 horizontal-component seismograms were simultaneously regressed for excitation and site characteristics, as well as for the crustal propagation, in the hypocentral distance range 20–200 km. Results are given in terms of excitation, attenuation, and specific site for the vertical ground motion, together with a horizontal-to-vertical ratio for each existing horizontalcomponent seismometer. The regional propagation was modeled in the 0.5- to 14.0- Hz frequency band by using a frequency-dependent piece wise continuous linear (in a log–log space) geometrical spreading function and a frequency-dependent attenuation parameter: Q( f ) ! 260( f /1.0)0.55 The excitation spectra of larger events were modeled by using the regional propagation, a single-corner frequency Brune spectral model characterized by an effective stress parameter, Dr ! 60 MPa, and by a regional estimate of the near-surface, distance-independent, networkaveraged attenuation parameter j0 ! 0.045 sec that was estimated from the rolloff of the empirical source spectra obtained from the regressions. Other studies (De Natale et al., 1987; Cocco and Rovelli, 1989; Singh et al., 2001) suggested large stress drops (Dr ! 30–100 MPa,) to explain the highfrequency amplitude levels of the seismic radiation of the largest quakes of the 1976 sequence. Predictions for peak ground acceleration (PGA) and pseudo–spectral velocity (PSV) (5% damping) were computed through the use of the random vibration theory (RVT), with the parameters obtained from the regressions of this study.en
dc.description.sponsorshipThis study was supported by the Gruppo Nazionale Difesa dai Terremoti, (GNDT) through the project Terremoti probabili in Italia tra l’anno 2000 e il 2030: elementi per la definizione di priorita` degli interventi di riduzione del rischio sismico, task 3.1. The contribution of R. B. Herrmann was supported in part by the Earthquake Engineering Research Center’s Program of the National Science Foundation under Award No. EEC-9701785.en
dc.language.isoEnglishen
dc.publisher.nameSSAen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries6/92(2002)en
dc.subjectAttenuation lawen
dc.subjectpeak ground accelerationen
dc.subjectpseudo-spectral velocityen
dc.titleCharacteristics of the Ground Motion in Northeastern Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2186-2204en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.relation.referencesAkinci, A., L. Malagnini, N. A. Pino, L. Scognamiglio, R. B. Herrmann and H. Eyidogan (2001). High-frequency ground motion in the Erzincan region, Turkey: inferences from small earthquakes, Bull. Seism. Soc. Am. 91, 1446–1455. Ambraseys, N. N. (1995). The prediction of earthquake peak ground acceleration in Europe, Earthquake Eng. Struct. Dyn. 24, 467–490. Ambraseys, N. N., and J. J. Bommer (1991). The attenuation of ground acceleration in Europe, Earthquake Eng. Struct. Dyn. 20, 1179–1202. Ambraseys, N. N., and J. Douglas (2000). Reappraisal of the effect of vertical ground motions on response, ESEE Report No. 00-4, August 2000, Engineering Seismology and Earthquake Engineering, 60 pp. Ambraseys, N. N., and K. A. Simpson (1996). Prediction of vertical response spectra in Europe, Earthquake Eng. Struct. Dyn. 25, 401–412. Ambraseys, N. N., K. A. Simpson, and J. J. Bommer (1996). Prediction of horizontal response spectra in Europe, Earthquake Eng. Struct. Dyn. 25, 371–400. Anderson, J. G., and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seism. Soc. Am. 74, 1969–1993. Aric, K., R. Gutdeutsch, G. Klinger, and W. Lenhardt (1987). Seismological studies in the Eastern Alps, in Geodynamics of the Eastern Alps, H. W. Fluegel and P. Faupl (Editors), Franz Deuticke, Vienna, Austria, 325–333. Atkinson, G. M., and W. Silva (1997). An empirical study on earthquake source spectra, Bull. Seism. Soc. Am. 87, 97–113. Bartels, R. H., and A. R. Conn (1980). Overdetermined systems of linear equations in the L1 sense, with or without linear constraints, ACM TOMS 6, 609–614. Bay, F., D. Fa¨h, L. Malagnini, and D. Giardini (2003). Spectral shear-wave ground motion scaling for Switzerland, Bull. Seism. Soc. Am. (in press). Bonamassa, O., and A. Rovelli (1986). On distance dependence of local magnitudes found from Italian strong-motion accelerograms, Bull. Seism. Soc. Am. 76, 579–581. Boore, D. M. (1986). Short-period P- and S-wave radiation from large earthquakes: implication for spectral scaling relations, Bull. Seism. Soc. Am. 76, 43–64. Boore, D. M. (1996). SMSIM: Fortran programs for simulating ground motion from earthquakes, version 1.0, U.S. Geol. Surv. Open-File Report 96-80-A, 73 pp. Boore, D. M., and W. B. Joyner (1997). Site amplification for generic rock sites, Bull. Seism. Soc. Am., 87, 327–341. Boore, D. M.,W. B. Joyner, and T. E. Fumal (1993). Estimation of response spectra and peak acceleration from western North America earthquakes: an interim report, U.S. Geol. Surv. Open-File Rept. 93-509, 72 pp. Braitenberg, C. (2000). Non-random spectral components in the seismicity of NE Italy, Earth Planet. Sci. Lett. 179, 379–390. Bressan G., A. Snidarcig, and C. Venturini (1998). Present state of tectonic stress of the Friuli area (eastern Southern Alps), Tectonophysics 292, 211–227. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. N. (1971). Correction, J. Geophys. Res. 76, 5002. Campbell, K. W., and Y. Bozorgnia (1994). Near-source attenuation of peak horizontal acceleration from worldwide accelerograms recorded from 1957 to 1993, in Proc. Fifth U.S. National Conference on Earthquake Engineering, EERI, Berkeley, California, Vol. 1, 283–292. Carulli G. B., R. Nicolich, A. Rebez, and D. Slejko (1990). Seismotectonic of the Northwest External Dinarides, Tectonophysics 179, 11–25. Cartwright, D. E., and M. S. Longuet-Higgins (1956). The statistical distribution of the maxima of a random function, Proc. R. Soc. London A237, 212–232. Chiaruttini, C., and L. Siro (1981). The correlation of peak ground horizontal acceleration with magnitude, distance, and seismic intensity for Friuli and Ancona, Italy, and the Alpide Belt, Bull. Seism. Soc. Am. 71, 1993–2009. Chouet, B., K. Aki, and M. Tsujiura (1978). Regional variation of the scaling law of earthquake source spectra, Bull. Seism. Soc. Am. 68, 49–79. Cipar, J. (1980). Teleseismic observations of the 1976 Friuli, Italy, earthquake sequence, Bull. Seism. Soc. Am. 70, 963–983. Cocco, M., and A. Rovelli (1989). Evidence for the variation of stress drop between normal and thrust faulting earthquakes in Italy, J. Geophys. Res. 94, 9399–9416. Console, R., and A. Rovelli (1981). Attenuation parameters for Friuli region from strong-motion accelerogram spectra, Bull. Seism. Soc. Am. 71, 1981–1991. Cramer, C. H., and J. S. Gomberg (2001). Updated New Madrid analysis better defines the uncertainty in seismic hazard maps, EOS 82, no. 102, 106. De Natale, G., R. Madariaga, R. Scarpa, and A. Zollo (1987). Source parameters analysis from strong motion records of the Friuli, Italy, earthquake sequence (1976–1977), Bull. Seism. Soc. Am. 77, 1127–1146. Ekstro¨m, G., and A. Dziewonski (1998). Evidence of bias in estimation of earthquake size, Nature 332, 319–323. Gebrande, H., H. Haege, G. H. Miller, G. Mueller, and E. Schmedes (1978). Aftershock investigations and fault-plane solutions of the Friuli earthquakes 1976, in Alps, Apennines, Hellenides, H. Closs, D. Roeder, and K. Schmidt (Editors), Inter-Union Commission on Geodynamics Scientific Report 38. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany, 173–177. Giese, P., and C. Prodehl (1976). Main features of crustal structure in theAlps, in Explosion Seismology in Central Europe: Data and Results, P. Giese, C. Prodehl, and A. Stein (Editors), Springer-Verlag, Berlin, Germany, Vol. 1, 347–375. Herrmann, R. B., and J. Dutt (1999). High frequency vertical ground motion in the Pacific Northwest using PNSN data, Seism. Res. Lett. 70, 216. Herrmann, R. B., and L. Malagnini (1996). Absolute ground motion scaling in the New Madrid Seismic Zone, Seism. Res. Lett. 67, 40. Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS) (2000). Bollettino della Rete Sismometrica del Friuli-Venezia Giulia, Centrodi Recerche Sismologiche, Udine, Vol. 8, September 2000, 29 pp. Jeon, Y.-S. (2000). High-frequency earthquake ground motion scaling in Utah, Master Thesis, Saint Louis University, 106 pp. Kramer, S. L. (1996). Geotechnical Earthquake Engineering, International Series in Civil Engineering and Engineering Mechanics, Prentice Hall, Upper Saddle River, New Jersey, 653 pp. Malagnini, L., and R. B. Herrmann (2000). Ground motion scaling in the region of the Umbria-Marche earthquake of 1997, Bull. Seism. Soc. Am. 90, 1041–1051. Malagnini, L., R. B. Herrmann, and M. Di Bona (2000a). Ground motion scaling in the Apennines (Italy), Bull. Seism. Soc. Am. 90, 1062–1081. Malagnini, L., R. B. Herrmann, and K. Koch (2000b). Regional ground motion scaling in Central Europe, Bull. Seism. Soc. Am. 90, 1052– 1061. Mayeda, K., and W. R. Walter (1996). Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes, J. Geophys. Res. 101, 11,195–11,208. Mayeda, K., A. Hofstetter, J. L. O’Boyle and W. R. Walter (2002). Stable and transportable regional magnitudes based on coda-derived moment- rate spectra, Bull. Seism. Soc. Am. (submitted). Molin, D. (2000). Terremoto del Friuli del 6 maggio 1976: Caratteri macrosismici, in Itinerario nel 1976: Viaggio nella storia sismica del Friuli, L. Peruzza, D. Slejko, and M. Riuscetti (Editors), Trieste, Italy. (CD-ROM). Morasca, P., L. Malagnini, A. Akinci, and D. Spallarossa (2002). Groundmotion scaling in the Western Alps, Seism. Res. Lett. 13, 251. Newmark, N. M., and W. J. Hall (1982). Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, 103 pp. Ortega, R., and R. B. Herrmann (2000). High-frequency ground motion in Central Mexico: site, excitation and attenuation, Seism. Res. Lett. 71, 246. Pino, N. A., L. Malagnini, A. Akinci, L. Scognamiglio, R. B. Herrmann, G. Stavrakakis, and G. Chouliaras (2001). Ground motion scaling relationships for mainland Greece and Crete, Seism. Res. Lett. 72, 258. Pondrelli, S., G. Ekstro¨m, and A. Morelli (2001). Seismotectonic re-evaluation of the 1976 Friuli, Italy, seismic sequence, J. Seismology 5, 73–83. Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and excitation of three-component ground motion in Southern California, Bull. Seism. Soc. Am. 89, 888–902. Sabetta, F., and A. Pugliese (1987). Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records, Bull. Seism. Soc. Am. 77, 1491–1511. Sabetta, F., and A. Pugliese (1996). Estimation of response spectra and simulation of nonstationary earthquake ground motion, Bull. Seism. Soc. Am. 86, 337–352. Samiezade-Yazd, M. R. (1993). Ground motion studies in the Southern Great Basin of Nevada and California, Ph.D. Thesis, Saint Louis University, 203 pp. Scognamiglio, L., L. Malagnini, A. Akinci, G. Di Grazia, N. A. Pino, and A. Ursino (2001). Ground motion scaling in the Eastern Sicily, EOS 82, no. 47 (fall meeting suppl.), abstract S4C-0606. Selli, R. (1963). Schema geologico delle Alpi Carniche e Giulie Occidentali, Giornale di Geologica 30, 1–136. Singh, D. D., A. Govoni, and P. L. Bragato (2001). Coda Qc attenuation and source parameter analysis in Friuli (NE Italy) and its vicinity, Pure Appl. Geophys. 158, 1737–1761. Slejko, D. (1987). Modello sismotettonico del Friuli, scuotibilita’ e rischio sismico, in Aree sismogenetiche e rischio sismico in Italia, E. Boschi and M. Dragoni (Editors), Editrice Galileo Galilei, Lausanne, Vol. 1, 327–370. Slejko D., G. B. Carulli, R. Nicolich, A. Zanferrari, A. Cavallin, C. Doglioni, F. Carraro, D. Castaldini, V. Iliceto, E. Semenza, and C. Zanolla (1989). Seismotectonics of the eastern southern-Alps: a review, Boll. Geof. Teor. Appl. 31, 109–135. Spalletta, C., and C. Venturini (1989). Stratigraphic correlation of the Paleozoic Sequenze in the Carnic Alps (Italy), Rend. Soc. Geol. Ital. 12, 417–421.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMalagnini, L.en
dc.contributor.authorAkinci, A.en
dc.contributor.authorHermann, R. B.en
dc.contributor.authorPino, N. A.en
dc.contributor.authorScognamiglio, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth and Atmospheric Sciencesen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth and Atmospheric Sciences-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0003-1092-7152-
crisitem.author.orcid0000-0002-5437-5276-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Malagnini_etal_bssa_2002.pdf2.92 MBAdobe PDF
Show simple item record

Page view(s) 50

272
checked on Apr 17, 2024

Download(s)

42
checked on Apr 17, 2024

Google ScholarTM

Check