Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2944
DC FieldValueLanguage
dc.contributor.authorallPalyvos, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLemeille, F.; IRSN (France)en
dc.contributor.authorallSorel, D.; Université Paris Suden
dc.contributor.authorallPantosti, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPavlopoulos, K.; Harokopio Universityen
dc.date.accessioned2007-12-04T12:09:39Zen
dc.date.available2007-12-04T12:09:39Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/2944en
dc.description.abstractThe westernmost part of the Gulf of Corinth (Greece) is an area of very fast extension (~15 mm/yr according to geodetic measurements) and active normal faulting, accompanied by intense coastal uplift and high seismicity. This study presents geomorphic and biological evidence of Holocene coastal uplift at the western extremity of the Gulf, where such evidence was previously unknown. Narrow shore platforms (benches) and rare notches occur mainly on Holocene littoral conglomerates of uplifting small fan deltas. They are perhaps the only primary paleoseismic evidence likely to provide information on earthquake recurrence at coastal faults in the specific part of the Rift system, whereas dated marine fauna can provide constraints on average Holocene coastal uplift rate. The types of geomorphic and biological evidence identified are not ideal, and there are limitations and pitfalls involved in their evaluation. In a first approach, 5 uplifted paleoshorelines may be indentified, at 0.4- 0.7, 1.0-1.3, 1.4-1.7, 2.0-2.3 and 2.8-3.4 m a.m.s.l. They probably formed after 1728 or 2250 Cal. B.P. (depending on the marine reservoir correction used in the calibration of measured radiocarbon ages). A most conservative estimate for the average coastal uplift rate during the Late Holocene is 1.6 or 1.9 mm/yr minimum (with different amounts of reservoir correction). Part of the obtained radiocarbon ages of Lithophaga sp. allows for much higher Holocene uplift rates, of the order of 3-4 mm/yr, which cannot be discarded given that similar figures exist in the bibliography on Holocene and Pleistocene uplift at neighbouring areas. They should best be cross-checked by further studies though. That the identified paleoshoreline record corresponds to episodes of coastal uplift only, cannot be demonstrated beyond all doubt by independent evidence, but it appears the most likely interpretation, given the geological and active-tectonic context and, what is known about eustatic sea-level fluctuations in the Mediterranean. Proving that the documented uplifts were abrupt (i.e., arguably coseismic), is equally difficult, but reasonably expected and rather probable. Five earthquakes in the last ca. 2000 yrs on the coastal fault zone responsible for the uplift, compare well with historical seismicity and the results of recent on-fault paleoseismological studies at the nearby Eliki fault zone. Exact amounts of coseismic uplift cannot be determined precisely, unless the rate of uniform ("regional") non-seismic uplift of Northern Peloponnesus at the specific part of the Corinth Rift is somehow constrained.en
dc.description.sponsorshipEuropean Community project 3HAZ-Corinthen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeomorphologyen
dc.subjectCoastal fault zoneen
dc.subjectShore platformsen
dc.subjectHolocene shorelinesen
dc.subjectPaleoseismologyen
dc.subjectCoastal upliften
dc.titleUsing geomorphic and biological indicators of coastal uplift for the evaluation of paleoseismicity anden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberon line firsten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.identifier.doi10.1016/j.geomorph.2007.07.010en
dc.relation.referencesAmbraseys, N. N. and J. A. Jackson, 1997. Seismicity and strain in the Gulf of 3 Corinth (Greece) since 1694, J. Earthquake Eng., 1, 433-474. 4 Armijo, R., B.Meyer, G.C.P. King, A. Rigo, D. Papanastassiou, 1996. Quaternary 5 evolution of the Corinth Rift and its implications for the Late Cenozoic evolution 6 of the Aegean. Geophys. J. Int. 126, 11–53. 7 Avallone, A., Briole, P., Agatza-Balodimou, A.-M., Billiris, H., Charade, O., 8 Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D., Veis, G., 2004. 9 Analysis of eleven years of deformation measured by GPS in the Corinth Rift 10 Laboratory area. C.R. Geoscience 336, 4/5, 301-311, 11 doi:10.1016/j.crte.2003.12.007. 12 Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., 13 Rougerie, F., 1996. Deglacial sea-level record from Tahiti corals and the timing of 14 global meltwater discharge. Nature 382, 241–244. 15 Bernard, P., Lyon-Caen, H., Briole, P., Deschamps, A., Pitilakis, K., Manakou, M., Boudin, 16 F., Berge, C., Makropoulos, K., Diagourtas, D., Papadimitriou, P., Lemeille, F., Patau, G., 17 Billiris, H., Castarède, H., Charade, O., Nercessian, A., Avallone, A., Zahradnik, J., Sacks, 18 S., Linde, A., 2006. Seismicity, deformation and seismic hazard in the western rift of 19 Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics 426, 7- 20 30. 21 Bryan, W. B., Stephens, R. S., 1993. Coastal bench formation at Hanauma Bay, Oahu, 22 Hawaii. Bull. Geol. Soc. Am. 105, 377-386. 23 Burbank, D. W., Anderson, R. S., 2001. Tectonic Geomorphology, Blackwell science, 24 274 pp. 25 Collier, R.E.L. , M.R. Leeder, R.J. Rowe, T.C. Atkinson, 1992. Rates of tectonic 26 uplift in the Corinth and Megara basins, central Greece, Tectonics 11, 1159–1167. 27 Collina-Girard, J., 1999. Observation en plongee de replats d’erosion eustatique a l’ile 28 d’Elbe (Italie) et a Marie-Galante (Antilles): une sequence bathymetrique modiale? 29 C.R. Acad. Sci. Paris 328, 823-829. 30 De Martini, P.-M., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L., Collier, R., 31 2004. Slip rates of the Aigion and Eliki faults from uplifted marine terraces, 32 Corinth Gulf, Greece. Comptes Rendus Geoscience 336(4-5), 325-334. 33 Doutsos, T., Poulimenos, G., 1992. Geometry and kinematics of active faults and their 34 seismotectonic significance in the western Corinth-Patras rift (Greece). Journal of 35 Structural Geology 14 (6), 689-699. 36 Flemming, N.C., Webb, C.O., 1986. Tectonic and eustatic coastal changes during the 37 last 10,000 years derived from Archaeological data, Z. Geomorph. N. F., suppl.-bd. 38 62, 1-29. 39 Flotté, N., 2003, Caracterisation structurale et cinematique d’un rift sur detachement: 40 Le rift de Corinthe-Patras, Grece, These doct., 196 pp., Univ. de Paris-Sud. 41 Fouache, E., Desruelles, S., Pavlopoulos, K., Dalongeville, R., Coquinot, Y., Peulvast, 42 J.-P., Potdevin, J.-L., 2005. Using beachrocks as sea level indicators in the insular 43 group of Mykonos, Delos and Rhenia (Cyclades, Greece), Zeitschrift fur 44 Geomorphologie, suppl. Vol. 137, 37-43. 45 Gaki-Papanastassiou, K., Papanastassiou, D., Maroukian, H., 1996. Geomorphic and 46 Archaeological - Historical evidence for past earthquakes in Greece. Annali di 47 Geofisica 39 (3), 589-601. 48 22 Ge, T., Migeon, W., Szepertyski, B., 2005, L’elevation seculaire des berges antiques 1 et medievales de Bordaux. Etude geoarchaeologique et dendrochronologique, C.R. 2 Geosc., 337, 297-303. 3 Gómez-Pujol, L., Cruslock, E.M., Fornos, J. J., Swantesson, J.O.H., 2006. 4 Unravelling factors that control shore platforms and cliffs in microtidal coasts: the 5 case of Mallorcan, Catalonian and Swedish coasts. Zeitschrift fur Geomorphologie 6 N.F. Suppl.-Vol. 144, 117-135. 7 Houghton, S. L., Roberts, G. P., Papanikolaou, I. D., McArthur, J. M., 2003. New 8 234U-230Th coral dates from the western Gulf of Corinth: implications for 9 extensional tectonics. Geoph. Res. Lett. 30 (19), 2013. doi:10.1029/2003GL018112 10 Hughen, K.A., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., 11 Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., 12 Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, F.G., 13 Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., 14 Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., 15 Weyhenmeyer, C.E., 2004, Radiocarbon 46, 1059-1086. 16 Keller, E., Pinter, N., 1999. Active tectonics – Earthquakes, uplift and landscape, 17 Prentice-Hall, 337 pp. 18 Kelletat, D., 2005. A Holocene sea-level curve for the eastern Mediterranean from 19 multiple indicators, Zeitchr. Geomorph., suppl. Vol. 137, 1-9. 20 Kelletat, D. H., 2005b. Notches. In Schwartz, M., (ed.), Encyclopedia of coastal 21 science. Springer, doi 10.1007/1-4020-3880-1_231. 22 Kennedy, D.M., Dickson, M.E., 2006. Lithological control on the elevation of shore 23 platforms in a microtidal setting. Earth Surface Processes and Landforms 31, 24 1575-1584. doi : 10.1002/esp.1358 25 Kershaw, S., Guo, L., 2001. Marine notches in coastal cliffs: indicators of relative 26 sea-level change, Perachora Peninsula, central Greece. Marine Geology 179, 213- 27 228. 28 Kershaw, S., Guo, L., Braga, J., 2005. A Holocene coral-algal reef at Mavra Litharia, 29 Gulf of Corinth, Greece: structure, history, and applications in relative sea-level 30 change. Marine Geology 215, 171-192. doi:10.1016/j.margeo.2004.12.003 31 Koukouvelas, I. & Doutsos, T., 1997. The effects of active faults on the generation of 32 landslides in NW Peloponnese. In: Engineering Geology and the Environment , 33 Marinos, G. C., Koukis, G. C., Tsabaos , S. G. C., (Eds), Proc. Int. Symp., A. A. 34 Balkema, Rotterdam, 799-804. 35 Koukouvelas, I., Doutsos, T., 1996. Implications of structural segmentation during 36 earthquakes: the 1995 Aigio earthquake, Gulf of Corinth, Greece. J. of Struct. 37 Geol. 18 (2), 1381-1388. 38 Koukouvelas, I., Katsonopoulou, D., Soter, S., Xypolias, P., 2005. Slip rates on the 39 Helike fault, Gulf of Corinth, Greece: new evidence from geoarchaeology. Terra 40 Nova 17, 158-164. 41 Kontopoulos, Ν., Zelilidis, Α., 1997. Depositional environments of the coarse-grained 42 lower Pleistocene deposits in the Rio-Antirio basin, Greece. In: Engineering 43 Geology and the Environment , Marinos, G. C., Koukis, G. C., Tsabaos , S. G. C., 44 (Eds), Proc. Int. Symp., A. A. Balkema, Rotterdam, 199-204. 45 Laborel, J., Laborel-Deguen, F., 1994. Biological indicators of relative sea-level 46 variations and co-seismic displacements in the mediterranean region. J. Coast. Res. 47 10 (2), 395–415. 48 23 Laborel, J., Morhange, C., Lafont, R., Le Campion, J., Laborel-Deguen, F., Sartoretto, 1 S., 1994. Biological evidence of sea level rise during the last 4500 years, on the 2 rocky coasts of continental SW France and Corsica. Mar. Geol. 120, 203-223. 3 Lajoie, K., 1986. Coastal tectonics. In Studies in Geophysics – Active tectonics, 4 National Academy Press, Washington DC, 95-124. 5 Lambeck, K., Purcell, A., 2005. Sea-level change in the Mediterranean Sea since the 6 LGM: model predictions for tectonically stable areas. Quaternary Science Reviews 7 24, 1969-1988. 8 Leeder, M., McNeill, L., Collier, R., Portman, C., Rowe, P., Andfrews, J., 2003. 9 Corinth rift margin uplift: new evidence from Late Quaternary marine shorelines. 10 Geoph. Res. Lett. 30 (12), 1661, doi:10.1029/2003GL017382. 11 Maroukian, H., Gaki-Papanastassiou, K., Papanastassiou, D. and Palyvos, N., 2000. 12 Geomorphological observations in the coastal zone of the Kyllini Peninsula, 13 western Peloponnesus, Greece and their relation to the seismotectonic regime of 14 the area. Journal of Coastal Research 16 (3), 853-863. 15 McCalpin, J.P. (ed.), 1996. Paleoseismology, Academic press, 588 pp. 16 McNeill, L.C., Collier, R.E.L., 2004. Uplift and slip rates of the eastern Eliki fault 17 segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. 18 J. Geol. Soc. Lond. 161, 81-92. 19 McNeill, L., Collier, R., De Martini P.-M., Pantosti, D., D’ Addezio, G., 2005. Recent 20 history of the Eastern Eliki fault, Gulf of Corinth: geomorphology, 21 Paleoseismology and impact on palaeoenvironments. Geoph. J. Int.161, 154-166. 22 Milas, P., 2003. Analysis of tide gauge data (Galaxidi – Aegira tide gauges). NTUA 23 technical report, Department of Topography, Laboratory of Higher Geodesy, 45 24 pp. 25 Moretti, I., Sakellariou, D., Lykoussis, V., Micarelli, L., 2003. The Gulf of Corinth: 26 an active half graben? J. of Geodyn. 36, 323-340. 27 Morhange, C., 2005. Relative sea-level changes in Marseille’s ancient harbors 28 (France) during the Late Holocene. Zeitschrift fur Geomorphologie N.F., suppl.vol. 29 137, 23-28. 30 Mörner, N.-A., 2005. Sea level changes and crustal movements with special aspects 31 on the eastern Mediterranean. Zeitschrift fur Geomorphologie N.F., suppl.vol. 137, 32 91-102. 33 Mouyiaris, N., Papastamatiou, D., Vita-Finzi, C., 1992. The Helice Fault? Terra Nova 34 4, 124-129. 35 Palyvos, N., Sorel, D., Lemeille, F., Mancini, M., Pantosti, D., Julia, R., 36 Triantaphylou, M., De Martini, P. M., 2007a. Review and new data on Pleistocene 37 uplift rates at the W termination of the Corinth Rift and the NE Rion graben area 38 (Achaia, NW Peloponnesus). Bulletin of the Geological Society of Greece 39 XXXVII (submitted Oct. 2006, to be published May 2007). 40 Palyvos, N., Pantosti, D., Stamatopoulos, L., De Martini, P.M., 2007b. 41 Reconnaissance geomorphological observations at the Psathopyrgos and Rion- 42 Patras fault systems (Achaia, NW Peloponnesus). Bulletin of the Geological 43 Society of Greece XXXVII, 12 pp (in press). 44 Palyvos, N., Pantosti, D., DeMartini, P. M., Lemeille, F., Sorel, D., Pavlopoulos, K, 45 2005. The Aigion-Neos Erineos normal fault system (Western Corinth Gulf Rift, 46 Greece): Geomorphological signature, recent earthquake history, and evolution. J. 47 of Geoph. Res. 110, B9, B09302, 15 p. doi:10.1029/2004JB003165. 48 24 Pantosti, D. & Palyvos, N. (eds), 2007a. 3HAZ Corinth project Deliverable 30 –Maps 1 of active faults, landslides and marine terraces, INGV Roma. 2 Pantosti, D. & Palyvos, N. (eds), 2007b. 3HAZ Corinth project Deliverable 32 – 3 Dating of paleoearthquakes, INGV Roma. 4 Papadopoulos, G., Vassilopoulou, A., Plessa, A., 2000. A new catalogue of historical 5 earthquakes in the Corinth Rift, Central Greece: 480 BC – AD 1910, in 6 Papadopoulos, G.A. (ed)., Historical Earthquakes and Tsunamis in the Corinth 7 Rift, Central Greece, Nat. Obs. Ath., Inst. Of Geodynamics, publ. no. 12, 9-120. 8 Papageorgiou, S., Arnold, M., Laborel, J., Stiros, S., 1993. Seismic uplift of the 9 harbour of ancient Aigeira, Central Greece. Int. J. Naut. Archaeol. 22.3, 275–281. 10 Pavlides, S., Koukouvelas, I., Kokkalas, S., Stamatopoulos, L., Keramydas, D., 11 Tsodoulos, I., 2004. Late Holocene evolution of the East Eliki Fault, Gulf of 12 Corinth (Central Greece). Quaternary International 115-116, 139-154. 13 Piper, D.J.W., Kontopoulos, N., Anagnostou, C., Chronis, G., Panagos, A.G., 1990. 14 Modern fan deltas in the western Gulf of Corinth, Greece. Geo-Mar.Lett. 10, 5-12. 15 Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J., Laborel-Deguen, F., 16 Papageorgiou, S., 1994. Episodic uplift deduced from Holocene shorelines in the 17 Perachora Peninsula, Corinth area, Greece. Tectonophysics 229, 201– 209. 18 Pirazzoli, P.A., 1996. Sea-Level Changes – The last 20,000 years. John Wiley & 19 Sons, Chichester, 211 pp. 20 Pirazzoli, P.A., Mastronuzzi, G., Saliege, J.F., Sanso, P., 1997. Late Holocene 21 emergence in Calabria, Italy. Marine Geology 141, 61-70. 22 Pirazzoli, P.A., Stiros, S., Arnold, M., Laborel, J., Laborel-Deguen, F., 1999. Late 23 Holocene coseismic vertical displacements and tsunami deposits Near Kynos, Gulf 24 of Euboea, Central Greece. Phys. Chem. Earth (A) 24 (4), 361-367. 25 Pirazzoli, P.A., Stiros, S.C., Fontunge, M., Arnold, M., 2004. Holocene and 26 Quaternary uplift in the central part of the southern coast of the Corinth Gulf 27 (Greece). Marine Geology 212, 35-44. doi:10.1016/j.margeo.2004.09.006 28 Pirazzoli, P.A., 2005. Marine erosion features and bioconstructions as indicators of 29 tectonic movements, with special attention to the eastern Mediterranean area. 30 Zeitschrift fur Geomorphologie, suppl. vol. 137, 71-77. 31 Pirazzoli, P.A., 2005b. A review of possible eustatic, isostatic and tectonic 32 contributions in eight Late Holocene relative sea-level histories from the 33 Mediterranean area. Quaternary Science Reviews 24, 1989-2001. 34 Poulimenos, G., 1993. Tectonics and sedimentation in the western Corinth Graben, 35 Greece. N. Jb. Geol. Palaont. Mh.10, 607-630. 36 Poulos, S.E., Collins, M.B., Pattiaratchi, C., Cramp, A., Gull, W., Tsimplis, M., 37 Papatheodorou, G., 1996. Oceanography and sedimentation in the semi-enclosed, 38 deep-water Gulf of Corinth (Greece). Marine Geology 134, 213-235. 39 Reimer, P.J., McCormac, F.C., 2002. Marine radiocarbon reservoir corrections for the 40 Mediterranean and Aegean Seas. Radiocarbon 44, 159– 166. 41 Rozos, D., 1991. Engineering geological conditions in Achaia Province – 42 geomechanical characteristics of the Plio-Pleistocene Sediments. PhD Thesis, 43 Department of Geology, University of Patras (in Greek). 44 Stanley, D.J., Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by 45 deceleration of sea-level rise. Science, 265, 228-231. 46 Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M.., Collier, R., 2002. 47 Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their 48 seismotectonic significance. Basin Res. 14, 487-502. 49 25 Stewart, I., 1996. Holocene uplift and paleoseismicity on the Eliki Fault, Western 1 Gulf of Corinth, Greece. Annali di Geofisica XXXIX/3, 575-588. 2 Stewart, I., Vita-Finzi, C., 1996. Coastal uplift on active normal faults: The Eliki fault, 3 Greece. Geoph. Res. Lett. 23 (14), 1853-1856. 4 Stiros, S.C., Arnold, M., Pirazzoli, P.A., Laborel, J., Laborel, F., Papageorgiou, S., 5 1992. Historical coseismic uplift on Euboea Island, Greece. Earth Planet. Sci. Lett. 6 108, 109– 117. 7 Stiros, S., Pirazzoli, P. A., 1995. Paleoseismic studies in Greece: a review. Quaternary 8 International 25, 57-63. 9 Stiros, S., Pirazzoli, P., Rothaus, R., Papageorgiou, S., Laborel, J., Arnold, M., 1996. 10 On the Date of Construction of Lechaion, Western Harbor of Ancient Corinth, 11 Greece. Geoarchaeology 11, 251– 263. 12 Stiros, S.C., 1998. Archaeological evidence for unusually rapid Holocene uplift rates 13 in an active normal faulting terrain: Roman harbour of Aigeira, Gulf of Corinth, 14 Greece, Geoarchaeology 13 (7), 731-741. 15 Stiros, S., Laborel, J., Laborel-Deguen, F., Papageorgiou, S., Evin, J., Pirazzoli, P.A., 16 2000. Seismic coastal uplift in a region of subsidence: Holocene raised shorelines 17 of Samos Island, Aegean Sea, Greece. Mar. Geol. 170, 41-58. 18 Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB 19 radiocarbon calibration program. Radiocarbon 35, 215-230. 20 Thornton, L.E., Stephenson, W.J., 2006. Rock strength: a control of shore platform 21 elevation. Journal of coastal research 22(1), 224-231. DOI:10.2112/05A-0017.1 22 Trenhaile, A. S., 2002. Rocks coasts, with particular emphasis on shore platforms. 23 Geomorphology 48, 7-22. 24 Trenhaile, A. S., 1987. The geomorphology of rock coasts. Oxford Research Studies 25 in Geography, Clarendon Press, Oxford, 384 pp. 26 Tselentis, G.-A., Makropoulos, K.C., 1986. Rates of crustal deformation in the Gulf of 27 Corinth as determined from seismicity. Tectonophysics 124, 55-66. 28 Westaway, R., 2002. The Quaternary evolution of the Gulf of Corinth, central Greece: 29 coupling between surface processes and flow in the lower continental crust. 30 Tectonophysics 348, 269-318.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorPalyvos, N.en
dc.contributor.authorLemeille, F.en
dc.contributor.authorSorel, D.en
dc.contributor.authorPantosti, D.en
dc.contributor.authorPavlopoulos, K.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIRSN (France)en
dc.contributor.departmentUniversité Paris Suden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentHarokopio Universityen
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.classification.parent04. Solid Earth-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptInstitut de Radioprotection et de Surete Nucléaire, Seismic Hazard Division-
crisitem.author.deptUniversité Paris-Sud, Centre d'Orsay, Faculty of Geology-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptFaculty of Geography, Harokopion University, Athens, Greece-
crisitem.author.orcid0000-0001-7308-9104-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
GEOMOR-564_small.pdf1.23 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

24
checked on Feb 10, 2021

Page view(s) 50

180
checked on Jul 24, 2024

Download(s) 50

269
checked on Jul 24, 2024

Google ScholarTM

Check

Altmetric