Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2885
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.authorallMelnik, O.; Centre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UK Institute of Mechanics, Moscow State University, Moscow, Russia-
dc.contributor.authorallSparks, R. S. J; Centre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UK-
dc.date.accessioned2007-11-29T08:20:52Z-
dc.date.available2007-11-29T08:20:52Z-
dc.date.issued2007-
dc.identifier.urihttp://hdl.handle.net/2122/2885-
dc.description.abstractMany lava dome building eruptions show periodic to complex non-periodic pulsatory activity. Typical time-scales associated with this activity range from hours to decades. Previous studies modelled the ascent of magma using a set of transient 1-D transport equations, accounting for degassing induced crystallization kinetics, gas exsolution and viscosity increase due to crystal growth. These models assumed flow in a cylindrical conduit with a fixed cross-section area. Since several observations suggest that extrusions are mainly fed by dykes, with cylindrical geometries developing only at shallow levels, here we generalised the model to the flow geometry represented by an elliptical dyke with major and minor semi-axes changing with depth. Quasi-static elastic deformation of the dyke is accounted by an analytical solution that couples cross-section area with the magmatic overpressure. The effects of the main dyke geometrical parameters and boundary conditions on the eruption dynamics were investigated. The presence of a deformable dyke can lead to a more complex periodic behaviour with a wider range of time-scales and cyclicity patterns with respect to a uniform cylindrical conduit. There is a regime where the period of pulsations is controlled by the elasticity of the dyke and a regime where the period is controlled by the volume of the magma chamber. Intermediate regimes are possible. Periodic variations in discharge rate are also possible for both fixed pressure in dyke source region and fixed influx rate into the dyke. Our study emphasizes the strong nonlinearities and complex behaviours of lava dome eruptions. From a forecasting and hazard perspective, intrinsic uncertainties in governing parameters may make volcanic systems in some circumstances unpredictable. On the other hand, lava dome systems may also develop episodic and systematic behaviours so that behaviour becomes predictable for a while.en
dc.language.isoengen
dc.publisher.nameelsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/ 260 (2007)en
dc.subjectlava domeen
dc.subjectextrusive eruptionen
dc.subjectdykeen
dc.subjectwallrock elasticityen
dc.titleControls of conduit geometry and wallrock elasticity on lava dome eruptionsen
dc.typearticle-
dc.description.statuspublished-
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber137–151en
dc.identifier.URLhttp://www.elsevier.com/locate/epslen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.identifier.doi10.1016/j.epsl.2007.05.024en
dc.relation.referencesBarmin, A., Melnik, O., Sparks, R.S.J., 1999. Periodic behavior in lava dome eruptions. Earth Planet. Sci. Lett. 199, 173–184. Beauducel, F., Cornet, F.H., Suhanto, E., Duquesnoy, T., Kasser, M., 2000. Constraints on magma flux from displacements data at Merapi volcano, Java, Indonesia. J. Geophys. Res. 105 (B4), 8193–8203. Blundy, J.D., Cashman, K.V., Humphreys, M.C.S., 2006. Magma heating by decompression-driven crystallisation beneath andesite volcanoes. Nature 443, 76–80. doi:10.1038/nature05100. Cashman, K.V., 1992. Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib. Mineral. Petrol. 109, 431–449. Cashman, K.V., 2004. Volatile controls on magma ascent and degassing. The State of the Planet: Frontiers and Challenges in Geophysics American Geophysical Union Monograph, 150, pp. 109–124. Christiansen, R.L., Peterson, D.W., 1981. Chronology of the 1980 eruptive activity. In: Lipman, P.W., Mullineaux, D.R. (Eds.), The 1980 Eruptions of Mount St. Helens, vol. 1250. S. Geological Survey Professional Paper, Washington (844 pp.). Costa, A., 2005. Viscosity of high crystal content melts: dependence on solid fraction. Geophys. Res. Lett. 32, L22308. doi:10.1029/ 2005GL02430 (further comments available at http://arxiv.org/abs/ physics/0512173). Costa, A., 2006. Permeability–porosity relationship: a re-examination of the Kozeny–Carman equation based on fractal pore-space geometry. Geophys. Res. Lett. 33, L02318. doi:10.1029/2005GL025134. Costa, A., Macedonio, G., 2003. Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows. Nonlinear Process. Geophys. 10, 545–555. Costa, A., Macedonio, G., 2005. Viscous heating effects in fluids with temperature-dependent viscosity: triggering of secondary flows. J. Fluid Mech. 540, 21–38. Delaney, P.T., Gartner, A.E., 1997. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geol. Soc. Am. Bull. 109, 1177–1192. Delaney, P.T., Pollard, D.D., 1981. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. Geol. U.S. Geological Survey Professional Paper, vol. 1202 (60 pp.). Denlinger, R., Hoblitt, R.P., 1999. Cyclic eruptive behavior of silicic volcanoes. Geology 27, 459–462. Dirksen,O.,Humphreys,M.C.S., Pletchov, P.,Melnik,O.,Demyanchuk, Y., Sparks, R.S.J.,Mahony, S., 2006. The 2001–2004 dome-forming eruption of ShiveluchVolcano,Kamchatka: observation, petrological investigation and numerical modelling. J. Volcanol. Geotherm. Res. 155, 201–226. doi:10.1016/j.jvolgeores.2006.03.029. Green, D.N., Neuberg, J., 2006. Waveform classification of volcanic low-frequency earthquake swarms and its implication at Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 153 (1–2), 51–63. doi:10.1016/j.jvolgeores.2005.08.003. Hess, K.U., Dingwell, D.B., 1996. Viscosities of hydrous leucogranite melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300. Hort, M., 1998. Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: effects of nucleation, crystal growth and thermal history of the magma. J. Petrol. 39, 1063–1076. Humphreys, M.C.S., Blundy, J.D., Sparks, R.S.J., 2006. Magma evolution and open-system processes at Shiveluch Volcano: insights from phenocryst zoning. J. Petrol. 47, 2303–2334. doi:10.1093/ petrology/egl045. Jaeger, J.C., Cook, N.G.W., 1976. Fundamental of Rock Mechanics, 2 ed. Chapman and Hall Ltd, London. Kirkpatrick, R., 1976. Towards a kinetic model for the crystallization of magma bodies. J. Geophys. Res. 81, 2565–2571. Landau, L., Lifschitz, E., 1994. Physique Theorique—Mecanique des Fluides, 3 ed. MIR, Moscow. Lister, J.R., Kerr, R.C., 1991. Fluid mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. 96, 10049–10077. Llewellin, E.W., Manga, M., 2005. Bubble suspension rheology and implications for conduit flow. J. Volcanol. Geotherm. Res. 143, 205–217. Mason, R.M., Starostin, A.B., Melnik, O., Sparks, R.S.J., 2006. From Vulcanian explosions to sustained explosive eruptions: the role of diffusive mass transfer in conduit flow dynamics. J. Volcanol. Geotherm. Res. 153, 148–165. doi:10.1016/j.jvolgeores.2005.08.011. Massol, H., Jaupart, C., Pepper, D.W., 2001. Ascent and decompression of viscous vesicular magma in a volcanic conduit. J. Geophys. Res. 106 (B8), 16223–16240. doi:10.1029/2001JB000385. Mastin, G.L., Pollard, D.D., 1988. Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. J. Geophys. Res. 93 (B11), 13221–13235. Melnik, O., Sparks, R.S.J., 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37–41. Melnik, O., Sparks, R.S.J., 2005. Controls on conduit magma flow dynamics during lava dome building eruptions. J. Geophys. Res. 110 (B022). doi:10.1029/2004JB003183. Mériaux, C., Jaupart, C., 1995. Simple fluid dynamic models of volcanic rift zones. Earth Planet. Sci. Lett. 136, 223–240. Muskhelishvili, N., 1963. Some Basic Problems in the Mathematical Theory of Elasticity. Noordhof, Leiden, The Netherlands. Nakada, S., Eichelberger, J.C., 2004. Looking into a volcano: drilling Unzen. Geotimes 49 (3), 14–17. Nakada, S., Shimizu, H., Ohta, K., 1999. Overview of the 1990–1995 eruption at Unzen Volcano. J. Volcanol. Geotherm. Res. 89, 1–22. Navon, O., Lyakhovsky, V., 1998. Vesiculation processes in silicic magmas. In: Gilbert, J., Sparks, R.S.J. (Eds.), The Physics of Explosive Volcanic Eruption. Special Publication, vol. 145. Geological Society, London, pp. 27–50. Ohba, T., Kitade, Y., 2005. Subvolcanic hydrothermal systems: implications from hydrothermal minerals in hydrovolcanic ash. J. Volcanol. Geotherm. Res. 145, 249–262. doi:10.1016/j. jvolgeores.2005.02.002. Roman, D.C., 2005. Numerical models of volcanotectonic earthquake triggering on non-ideally oriented faults. Geophys. Res. Lett. 32. doi:10.1029/2004GL021549. Roman, D.C., Neuberg, J., Luckett, R.R., 2006. Assessing the likelihood of volcanic eruption through analysis of volcanotectonic earthquake fault-plane solutions. Earth Planet. Sci. Lett. 248, 244–252. doi:10.1016/j.epsl.2006.05.029. Rubin, A.M., 1995. Propagation of magma-filled cracks. Annu. Rev. Planet. Sci. 23, 287–336 Sparks, R.S.J., et al., 1998. Magma production and growth of the lava dome of the Soufrière Hills volcano, Montserrat: November 1995 to December 1997. Geophys. Res. Lett. 25, 3421–3424. Sparks, R.S.J., Young, S.R., 2002. The eruption of Soufrière Hills volcano, Montserrat (1995–1999): overview of scientific results. Mem. Geol. Soc. London 21, 45–69. Sparks, R.S.J., Baker, L., Brown, R.J., Field, M., Schumacher, J., Stripp, G.,Walters, A.L., 2006. Dynamics of kimberlite volcanism. J. Volcanol. Geotherm. Res. 155, 18–48. Sturton, S., Neuberg, J., 2006. The effects of conduit length and acoustic velocity on conduit resonance: implications for lowfrequency events. J. Volcanol. Geotherm. Res. 151 (4), 319–339. doi:10.1016/j.jvolgeores.2005.09.009. Swanson, D.A., Holcomb, R.T., 1999. Regularities in growth of the Mount St. Helens dacite dome 1980–1986. In: Fink, J.H. (Ed.), Lava flows and domes: emplacement mechanisms and hazards implications. Springer Verlag, Berlin, pp. 3–24. Troise, C., Pingue, F., De Natale, G., 2003. Coulomb stress changes at calderas: modeling the seismicity at Campi Flegrei (southern Italy). J. Geophys. Res. 108 (B6). doi:10.1029/2002JB002006. Voight, B., et al., 1999. Magma flow instability and cyclic activity at Soufrière Hills Volcano, Montserrat. Science 283, 1138–1142. Voight, B., et al., 2006. Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse. Geophys. Res. Lett. 33, L03312. doi:10.1029/2005GL024870. Wadge, G., Mattioli, G.S., Herd, R.A., 2006. Ground deformation at Soufrière Hills volcano, Montserrat during 1998–2000 measured by radar interferometry and GPS. J. Volcanol. Geotherm. Res. 152, 157–173. Williams, S.N., Self, S., 1983. The October 1902 Plinian eruption of Santa Maria volcano, Guatemala. J. Volcanol. Geotherm. Res. 16, 33–56. Yokoyama, I., Yamashita, H., Watanabe, H., Okada, H., 1981. Geophysical characteristics of dacite volcanism — 1977–1978 eruption of Usu volcano. J. Volcanol. Geotherm. Res. 9, 335–358en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCosta, A.-
dc.contributor.authorMelnik, O.-
dc.contributor.authorSparks, R. S. J-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.departmentCentre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UK Institute of Mechanics, Moscow State University, Moscow, Russia-
dc.contributor.departmentCentre for Environmental and Geophysical Flows, Department of Earth Sciences, University of Bristol, Bristol, UK-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth Sciences, University of Bristol, Bristol, UK.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptInst. Mechanics, Moscow State University, Moskow, Russia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
cosmel2007_epsl.pdf827.54 kBAdobe PDFView/Open
Show simple item record

Page view(s)

101
Last Week
0
Last month
0
checked on Oct 19, 2018

Download(s)

24
checked on Oct 19, 2018

Google ScholarTM

Check

Altmetric