Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2847
DC FieldValueLanguage
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGranieri, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallRusso, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFiebig, J.; Geologisch–Palaontologisches Institut, J.W. Goethe Universita¨Frankfurt, Germanyen
dc.date.accessioned2007-11-22T07:44:22Zen
dc.date.available2007-11-22T07:44:22Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/2847en
dc.description.abstractThe analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 C was inferred by methanebased chemical–isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200–240 C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (dD 20&, d18O 10&) and a CO2-rich composition ðXCO2 0:4Þ has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to 0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal systemen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries71 (2007)en
dc.subjectorigin of the fumarolesen
dc.titleThe origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3040-3055en
dc.identifier.URLhttp://www.elsevier.com/locate/cgaen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.gca.2007.04.007en
dc.relation.referencesAllard P., Baubron J. V .C., Le Bronec J., Luongo G., Maurenas J. M., Pece R., Robe M. C., Tedesco D., and Zettwoog P. (1988) Geochemical survey of volcanic gas soil emanations and eruption forecasting: The Vesuvius case, Italy. In Proceedings of the Kagoshima International Conference on Volcanoes. Allard P., Maiorani A., Tedesco D., Cortecci G., and Turi B. (1991) Isotopic Study of the Origin of Sulfur and Carbon in Solfatara Fumaroles, Campi Flegrei Caldera. J. Volcanol. Geotherm. Res. 48(1-2), 139–159. Allard P., Jean-Baptiste P., D’Alessandro W., Parello F., Parisi B., and Flehoc C. (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet. Sci. Lett. 148(3–4), 501–516. Baldi P., Ferrara G. C., and Panichi C. (1975) Geothermal research in western Campania (southern Italy): chemical and isotopic studies of thermal fluids in the Campi Flegrei. In Proceedings of the 2nd U.N. Symp. on Development and Use of Geothermal Resources, San Francisco, pp. 687–697. Balducci S., and Chelini W. (1992) Hydrothermal equilibria in the active Mofete geothermal system, Phlegrean Fields, Naples Italy. Acta Vulcanol. 2, 17–34. Barberi F., Corrado G., Innocenti F., and Luongo G. (1984) Phlegrean Fields 1982– 1984: Brief chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47, 175– 185. Bolognesi L., Noto P., and Nuti S. (1986) Studio chimico ed isotopico della solfatara di Pozzuoli: ipotesi sull’origine e sulle temperature profonde dei fluidi. Rend. Soc. It. Mineral. Petrol. 41(2), 281–295. Bonafede M., and Mazzanti M. (1998) Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 81(1–2), 137–157. Brombach T., Caliro S., Chiodini G., Fiebig J., Hunziker J. C., and Raco B. (2003) Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bull. Volcanol.(65), 505–516. doi:10.1007/s00445-003-0278-. Caliro S., Chiodini G., Avino R., Cardellini C., and Frondini F. (2005) Volcanic degassing at Somma-Vesuvio (Italy) inferred by chemical and isotopic signatures of ground water. Appl. Geochem. 20(6), 1060–1076. Cassano E., Guglielminetti M., and Verdiani G. (1986) Phlegrean Fields area; first results of geothermal research. Geologia Applicata e Idrogeologia 21(1), 207–221. Chiodini G., and Marini L. (1998) Hydrothermal gas equilibria; the H2O–H2 –CO2 –CO–CH4 system. Geochim. Cosmochim. Acta 62(15), 2673–2687. Chiodini G., Cioni R., Guidi M., Marini L., Raco B., and Taddeucci G. (1992) Gas geobarometry in boiling hydrothermal /systems: A possible tool to evaluate the hazard of hydrothermal explosions. Acta Vulcanol. 2, 99–107. Chiodini G., Cioni R., and Marini L. (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl. Geochem. 8(4), 357–371. Chiodini G., Cioni R., Magro G., Marini L., Panichi C., Raco B., and Russo M. (1996) Chemical and isotopic variations of Bocca Grande fumarole (Solfatara volcano, Phlegrean Fields). Acta Vulcanol. 8, 129–138. Chiodini G., Cioni R., Guidi M., Magro G., Marini L., Panichi C., Raco B., and Russo M. (2000a) Vesuvius and Phlegrean Fields; Gas geochemistry; Geochemical monitoring of the Phlegrean Fields and Vesuvius (Italy) in 1996. Acta Vulcanol. 12(1–2), 117–119. Lemmon E. W., McLinden M. O., and Friend D. G. (2005) Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (eds. J. P. J. Linstrom and W. G. Mallard). National Institute of Standards and Technology, Gaithersburg, MD (http:// webbook.nist.gov). Lyon G. L., and Hulston J. R. (1984) Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochim. Cosmochim. Acta 48, 1161–1171. Martelli M., Nuccio P. M., Stuart F. M., Burgess R., Ellam R. M., and Italiano F. (2004) Helium strontium isotopic constrains on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295–308. Marty B., Trull T., Lussiez P., Basile I., and Tanguy J. C. (1994) He, Ar, O, Sr and Nd isotopeconstraints on the origin and evolution of the Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. Melluso L., Morra V., Perrotta A., Scarpati C., and Adabbo M. (1995) The eruption of Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J. Volcanol. Geotherm. Res. 68, 325–339. Panichi C., and Volpi G. (1999) Hydrogen, oxygen and carbon isotope ratios of Solfatara fumaroles (Phlegrean Fields, Italy): further insight into source processes. J. Volcanol. Geotherm. Res. 91(2–4), 321–328. Penta F. (1954) Ricerche e studi sui fenomeni esalativo idrotermali ed il problema delle forze endogene. Ann. Geofis. 8(3), 1–94. Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. (2001) Numerical recipes in Fortran 77: the art of scientific computing. Cambridge Univ. Press, Cambridge. Pruess K. (1991) TOUGH2 – A general purpose numerical simulator for multiphase fluid and heat flow, LBL Report 29400, Lawrence Berkeley Lab. Richet P., Bottinga Y., and Javoy M. (1977) A review of H, C, N, O, S and Cl stable isotope fractionation among gaseous molecules. Ann.Rev. Earth Planet. Sci. Lett. 5, 65–110. Saccorotti G., Bianco F., Castellano M., and Del Pezzo E. (2001) The July–August 2000 seismic swarms at Campi Flegrei volcanic complex, Italy. Geophys. Res. Lett. 28(13), 2525–2528. Sano Y., Wakita H., Italiano F., and Nuccio P. M. (1989) Helium isotopes and tectonics in southern Italy. Geophys. Res. Lett. 16, 511–514. Stull D. R., Westrum E. F., and Sinke G. G. (1969) The Chemical Thermodynamics of Organic Compounds. Wiley. Taran Y. A., Pokrovsky B. G., and Esikov A. D. (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes:’andesitic waters’. Dokl. Akad. Nauk SSSR 304, 440–443. Tedesco D. (1996) Chemical and isotopic investigations of fumarolic gases from Ischia Island (southern Italy); evidences of magmatic and crustal contribution. J. Volcanol. Geotherm. Res. 74(3–4), 233–242. Tedesco D. (1997) Systematic variations in the 3He/4He ratio and carbon of fumarolic fluids from active volcanic areas in Italy isotopic composition of deep-seated carbon. Geochim. Cosmochim. Acta 37, 1709–1733. Dellino P., Isaia R., La, Volpe L., and Orsi G. (2001) Statistical analysis of textural data from complex pyroclastic sequences; implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy. Bull. Volcanol. 63(7), 443–461. Epstein S., and Mayeda T. (1953) Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224. Fulignati P., Marianelli P., Proto M., and Sbrana A. (2004) Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy) J. Volcanol. Geotherm. Res. 133, 141–155. Giggenbach W. F. (1975) A simple method for the collection and analysis of volcanic gas samples. Bull. Volcanol. 39(1), Geochemistry of Volcanic Gases (first part), 132–145. Giggenbach W. F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta 44(12), 2021–2032. Giggenbach W. F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2(2), 143–161. Giggenbach W. F. (1988) Geothermal solute equilibria, derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52(12), 2749–2765. Giggenbach W. F. (1991) Chemical techniques in geothermal exploration. In Application of Geochemistry in Geothermal Reservoir Development (ed. F. D’Amore). UNITAR, New York, pp. 119–144. Giggenbach W. F. (1992a) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proceedings – International Symposium on Water–Rock Interaction 7, 873–878. Giggenbach W. F. (1992b) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 113(4), 495–510. Giggenbach W. F. (1997) The origin and evolution of fluids in magmatic–hydrothermal systems. In Geochemistry of Hydrothermal Ore Deposits (ed. H. Barnes). Wiley, New York, pp. 737–796. Giggenbach W. F., and Gouguel R. L. (1989) Collection and analysis of geothermal volcanic water and gas discharges. Chemistry Division, DSIR, New Zealand. Report no. CD 2401. Giggenbach W. F., and Matsuo S. (1991) Evaluation of results from Second and Third IAVCEI field workshops on Volcanic gases, Mt. Usu, Japan, and White Island, New Zealand. Appl. Geochem. 6(2), 125–141. Giggenbach W. F., and Poreda R. J. (1993) Helium isotopic and chemical composition of gases from volcanic-hydrothermalen
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Degassamento naturaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCaliro, S.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorMoretti, R.en
dc.contributor.authorAvino, R.en
dc.contributor.authorGranieri, D.en
dc.contributor.authorRusso, M.en
dc.contributor.authorFiebig, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentGeologisch–Palaontologisches Institut, J.W. Goethe Universita¨Frankfurt, Germanyen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptGoethe University, Frankfurt a.M., Germany-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.orcid0000-0003-2831-723X-
crisitem.author.orcid0000-0001-5161-5951-
crisitem.author.orcid0000-0001-5074-1462-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CalChi 2007.pdf1.32 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

122
checked on Feb 10, 2021

Page view(s) 50

278
checked on Sep 7, 2024

Download(s)

44
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric