Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2768
DC FieldValueLanguage
dc.contributor.authorallDi Alessandro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBoatwright, J.; U.S.G.S. Menlo Parken
dc.date.accessioned2007-11-07T15:34:17Zen
dc.date.available2007-11-07T15:34:17Zen
dc.date.issued2006-08en
dc.identifier.urihttp://hdl.handle.net/2122/2768en
dc.description.abstractThe U.S. Geological Survey deployed a digital seismic station in Oceano, California, in February 2004, to investigate the cause of damage and liquefaction from the 22 December 2003 Mw 6.5 San Simeon earthquake. This station recorded 11 Mw 2.8 aftershocks in almost 8 weeks. We analyze these recordings, together with recordings of the mainshock and the same aftershocks obtained from nearby stations in Park Hill and San Luis Obispo, to estimate the mainshock ground motion in Oceano. We estimate the Fourier amplitude spectrum using generalized spectral ratio analysis. We test a set of aftershocks as Green’s functions by comparing simulated and recorded acceleration amplitude spectra for the mainshock at San Luis Obispo and Park Hill. We convolve the aftershock accelerograms with a stochastic operator to simulate the duration and phase of the mainshock accelerograms. This approximation allows us to extend the range of aftershocks that can be used as Green’s functions to events nearly three magnitude units smaller than the mainshock. Our realizations for the mainshock accelerogram at Oceano yield peak ground accelerations distributed as 28% +/- 4%g. We interpret these realizations as upper bounds for the actual ground motion, because our analysis assumes a linear response, whereas the presence of liquefaction indicates that the ground behaved nonlinearly in Oceano.en
dc.description.sponsorshipU.S.G.S University of Naples “Federico II” University of Rome “La Sapienza,”en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseriesVol. 96, No. 4A, 2006en
dc.subjectStochastic,en
dc.subjectsimulation,en
dc.subjectground motion,en
dc.subjectspectral ratioen
dc.subjectGreen’s functionen
dc.subjectearthquakeen
dc.titleA Stochastic Estimate of Ground Motion at Oceano, California, for the M 6.5 22 December 2003 San Simeon Earthquake, Derived from Aftershock Recordingsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1437–1447en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1785/0120040183en
dc.relation.referencesArias, A. (1970). A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants, R. J. Hansen (Editor), MIT Press, Cambridge, Massachusetts, 438–483. Beresnev, I. A., and G. M. Atkinson (1997). Modeling finite-fault radiation from the xn spectrum, Bull. Seism. Soc. Am. 87, 67–84. Boatwright, J., and L. C. Seekins (2004). Directivity in the near-field and regional recordings of the 22 December 2003 San Simeon earthquake, Seism. Res. Lett. 74, no. 2, 265. Boatwright, J., L. Seekins, T. E. Fumal, H. Liu, and C. S. Mueller (1991). Ground-motion amplification in the Marina District, Bull. Seism. Soc. Am. 81, 1980–1997. Boore, D. M. (1983). Stochastic simulation of high frequency groundmotions based on seismological models of the radiation spectra, Bull. Seism. Soc. Am. 73, 1865–1894. Boore, D. M. (1986). Short-period P- and S-wave radiation from large earthquakes: implications for spectral scaling relations, Bull. Seism. Soc. Am. 76, 43–64. Boore, D. M. (2000). SMSIM—Fortran programs for the simulating ground motions from earthquake: version 2.0—A revision of OFR 96-80-A, U.S. Geol. Surv. Open-File Rept. OF 00-509, 55 pp. Boore, D. M. (2003a). Simulation of ground strong motion using the stochastic method, Pure Appl. Geophys. 160, 635–676. Boore, D. M. (2003b). Phase derivatives and simulation of strong groundmotions, Bull. Seism. Soc. Am. 93, 1132–1143. Boore, D. M., and W. B. Joyner (1984). A note on the use of random vibration theory to predict peak amplitudes of transient signals, Bull. Seism. Soc. Am. 74, 2035–2039. Boore, D. M.,W. B. Joyner, and T. E. Fumal (1997). Empirical near-source attenuation relations for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, Seism. Res. Lett. 68, no. 1, 154–179. Bour, M., and M. Cara (1997). Test of a simple empirical Green’s function method on moderate sized earthquake, Bull. Seism. Soc. Am. 87, 668– 683. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. N. (1971). Correction, J. Geophys. Res. 76, 5002. Frankel, A. (1995). Simulating strong motion of large earthquakes using recordings of small earthquakes: the Loma Prieta Mainshock as a test case, Bull. Seism. Soc. Am. 85, 1144–1160. Hardebeck, J. L., J. Boatwright, D. Dreger, R. Goel, V. Grazier, K. Hudnut, C. Ji, L. Jones, J. Langbein, J. Lin, E. Roeloffs, R. Simpson, K. Stark, R. Stein, and J. Tinsley (2004). Preliminary report on the 22 December 2003, M6.5 San Simeon, California, earthquake, Seism. Res. Lett. 75, no. 2, 155–172. Hardley, D. M., and D. V. Helmberger (1980). Simulation of strong ground motions, Bull. Seism. Soc. Am. 70, 617–630. Hartzell, S., S. Harmsen, A. Frankel, and S. Larsen (1999). Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake, Bull. Seism. Soc. Am. 89, 1484–1504. Hartzell, S. H. (1978). Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5, 1–4. Hartzell, S. H. (1989). Comparison of seismic waveforms inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake, J. Geophys. Res. 94, 7515– 7534. Holzer, T. L., T. E. Noce, M. J. Bennett, C. Di Alessandro, J. Boatwright, J. C. Tinsley, III, R. W. Sell, and L. I. Rosenberg (2004). Liquefaction- induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake, U.S. Geol. Surv. Open-File Rep. 2004-1269. http://pubs.usgs.gov/of/2004/1269 (last accessed May 2006). Hutchings, L. (1994). Kinematic earthquake models and synthesized ground motion using empirical Green’s functions, Bull. Seism. Soc. Am. 84, 1028–1050. Irikura, K. (1983). Semi-empirical estimation of strong ground motions during large earthquakes, Bull. Disast. Prev. Res. Inst., Kyoto Univ. 33, 63–104. Irikura, K., and K. Kamae (1994). Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique, Ann. Geofis. 37, 1721–1743. Jarpe, S. P., and P. W. Kasameyer (1996). Validation of a procedure for calculating broadband strong-motion time histories with empirical Green’s functions, Bull. Seism. Soc. Am. 86, 1116–1129. Joyner, W. B., and D. M. Boore (1981). Peak horizontal acceleration and velocity from strong-motion records including the records from the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am. 71, 2011–2038. Joyner, W. B., and D. M. Boore (1986). On simulating large earthquakes by Green’s function addition of smaller earthquakes, in Earthquake Source Mechanics, S. Das, J. Boatwright, and C. H. Scholtz (Editors), Maurice Ewing Series 6, American Geophysical Monograph 37, 269– 274. Joyner, W. B., and D. M. Boore (1988). Measurement, characterization, and prediction of strong ground-motion, in Earthquake Engineering and Soil Dynamics II, Proc. Am. Soc. Civil Eng. Geotech. Eng. Div. Specialty Conf., 27–30 June 1988, Park City, Utah, 43–102. Kayen, R. E., H.-P. Lui, T. E. Fumal, R. E. Westerlund, R. E. Warrick, J. F. Gibbs, and H. J. Lee (1990). Engineering and seismic properties of the soil column at Winfield Scott School, San Francisco, U.S. Geol. Surv. Open-File Rept. 90-253, 103–120. Kohrs-Sansorny, C., F. Courboulex, M. Bour, and A. Deschamps (2005). A two-stage method for ground-motion simulation using stochastic summation of small earthquakes, Bull. Seism. Soc. Am. 95, 1387– 1400. Mueller, C. S. (1985). Source pulse enhancement by deconvolution of an empirical Green’s function, Geophys. Res. Lett. 12, 33–36. Ordaz, M., J. Arboleda, and S. K. Singh (1995). A scheme of random summation of an empirical Green’s function to estimate ground motions from future large earthquakes, Bull. Seism. Soc. Am. 85, 1635– 1647. Pavic, R., M. G. Koller, P. Y. Bard, and C. Lacave-Lachet (2000). Ground motion prediction with the empirical Green’s function technique: an assessment of uncertainties and confidence level, J. Seism. 4, 59–77. Silva, W. J., R. B. Darragh, C. Stark, I. Wong, J. C. Stepp, J. Schneider, and S. J. Chiou (1990). A methodology to estimate design response spectra in the near-source region of large earthquake using the bandlimited white noise ground motion model, in Proc. of the 4th U.S. Nat. Conf. Earthquake Eng., Palm Springs, California, Earthquake Engineering Research Institute 1, 487–494. Somerville, P. (1993). Engineering applications of strong ground motion simulation, Tectonophysics 218, 195–129. Toprak, S., and T. L. Holzer (2003). Liquefaction potential index: field assessment, J. Geotech. Geoenviron. Eng. 129, no. 4, 315–322. Tumarkin, A. G., and R. J. Archuleta (1994). Empirical ground motion prediction, Ann. Geofis. 37, 1691–1720. Tumarkin, A. G., R. J. Archuleta, and R. Madariaga (1994). Scaling relations for composite earthquake models, Bull. Seism. Soc. Am. 84, 1279–1283. Wald, D. A., V. Quitoriano, T. H. Heaton, and H. Kanamori (1999). Relationship between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake Spectra 15, no. 3, 557–564. Wennerberg, L. (1990). Stochastic summation of empirical Greensfunctions, Bull. Seism. Soc. Am. 80, 1418–1432. Wills, C. J., M. Petersen, W. A. Bryant, M. Reichle, G. J. Saucedo, S. Tan, G. Taylor, and J. Treiman (2000). A site-conditions map for California based on geology and shear-wave velocity, Bull. Seism. Soc. Am. 90, no. 6b, S187–S208. Zeng, Y. H., J. G. Anderson, and G. A. Yu (1994). Composite source model for computing realistic synthetic strong ground motions, Geophys. Res. Lett. 21, 725–728.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDi Alessandro, C.en
dc.contributor.authorBoatwright, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentU.S.G.S. Menlo Parken
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptU.S.G.S. Menlo Park-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Oceano_Paper.pdfPublished paper288.51 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 5

1
checked on Feb 10, 2021

Page view(s)

125
checked on Mar 27, 2024

Download(s)

21
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric