Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2680
DC FieldValueLanguage
dc.contributor.authorallFridriksson, T.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.authorallKristjansson, R.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.authorallArmannsson, H.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.authorallMargretardottir, E.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.authorallOlafsdottir, S.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-10-15T13:38:39Zen
dc.date.available2007-10-15T13:38:39Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2680en
dc.description.abstractCarbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO2 concentration of steam in the Reykjanes area. The observed rates of CO2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more reliable proxy for heat loss from geothermal systems than soil temperatures. The soil diffuse degassing at Reykjanes appears to be strongly controlled by the local tectonics. The observed diffuse degassing defines 3–5 elongated N–S trending zones (000–020 ). The orientation of the diffuse degassing structures at Reykjanes is consistent with reported trends of right lateral strike slip faults in the area. The natural CO2 emissions from Reykjanes under the current low-production conditions are about 16% of the expected emissions from a 100 MWe power plant, which has recently been commissioned at Reykjanes.en
dc.language.isoEnglishen
dc.relation.ispartofApplied Geochemistryen
dc.subjectgeothermalen
dc.subjectemissionsen
dc.titleCO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Icelanden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber(1551–1569)en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.identifier.doidoi:10.1016/j.apgeochem.2006.04.006en
dc.relation.references´ gu´stsdo´ ttir, A.M., Brantley, S.L., 1994. Volatile fluxes integrated over 4 decades at Grı´msvo¨tn volcano, Iceland. J. Geophys. Res. 99 B5, 9505–9522. Aiuppa, A., Caleca, A., Federico, C., Gurrieri, S., Valenza, M., 2004. Diffuse degassing of carbon dioxide at Somma–Vesuvius volcanic complex (Southern Italy) and its relation with regional tectonics. J. Volcanol. Geotherm. Res. 133, 55–79. Allard, P., Carbonelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. A ´ rmannsson, H., 1991 Geothermal energy and the environment. In: Geoscience Society of Iceland. Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 16–17 (In Icelandic). A ´ rmannsson, H., Benjamı´nsson, J., Jeffrey, A., 1989. Gas changes in the Krafla geothermal system, Iceland. Chem. Geol. 76, 175–196. A ´ rmannsson, H., Fridriksson, Th., Kristja´nsson, B.R., 2005. CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 34, 286–296. Arno´rsson, S., 1991. Estimate of natural CO2 and H2S flow from Icelandic high-temperature geothermal areas. In: Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 18–19 (In Icelandic). Arno´rsson, S., Gı´slason, S.R., 1994. CO2 from magmatic sources in Iceland. Miner. Mag. 58A, 27–28. Arno´rsson, S., Gunnlaugsson, E., 1985. New gas geothermometers for geothermal exploration – calibration and application. Geochim. Cosmochim. Acta 49, 1307–1325. Arno´rsson, S., Fridriksson, Th., Gunnarsson, I., 1998. Gas chemistry of the Krafla Geothermal field, Iceland. In: Arehart G.B., Hulston J.R. (Eds)., Proceedings of the 9th International Symposium Water–Rock Interaction, WRI-9, pp. 613– 616. Arno´rsson, S, Sigurdsson, S., Svavarsson, H., 1982. The chemistry of geothermal waters in Iceland 1. Calculation of aqueous speciation from 0 C to 370 C. Geochim. Cosmochim. Acta 46, 1513–1532. Ba´rdarson, G.G., 1931. The warm sea water pool at Reykjanes. Na´ttu´rufreadingurinn 1, 78–80 (in Icelandic). Baubron, J.C., Allard, P., Toutain, J.P., 1991. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51–53. Bjo¨rnsson, S., O´ lafsdo´ ttir B., To´masson J., Jo´nsson J., Arno´ rsson, S., Sigurmundsson, S.G., 1971. Reykjanes. Final report on investigations in the geothermal area. National Energy Authority report (in Icelandic). Bjo¨rnsson, G., O´ lafsson, M., Jo´nasson, H., Magnu´sson, Th. M., 2004. Production studies of wells RN-9, RN-10, RN-11 and RN-12 in Reykjanes (2002–2004). Iceland GeoSurvey report I´ SOR-2004/019 (in Icelandic). Brombach, T., Hunziker, J.C, Chiodini, G., Cardellini, C., Marini, L., 2001. Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys. Res. Lett. 28, 67–72. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulations to CO2 flux from soil: mapping and quantifying gas release. J. Geophys. Res. 108, 2425. doi:10.1029/2002JB002165. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106 B8, 16213–16221. Chiodini, G., Frondini, F., Raco, B., 1996. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volc. 58, 41–50. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., submitted for publication. Carbon dioxide diffuse degassing: implications on the energetic state of volcanic/ hydrothermal systems. J. Geophys. Res. Clifton, A.E., Schlische, R.W., 2003. Fracture populations on the Reykjanes Peninsula, Iceland: comparison with experimental clay models of oblique rifting. J. Geophys. Res. 108 B2, 2074. D’Amore, F., Truesdell, A.H., 1985. Calculations of geothermal reservoir temperatures and steam fractions from gas compositions. GRC Trans. 9, 305–310. David, M., 1977. Geostatistical Ore Reserve Estimations. Elsevier, New York. Dawson, G.B., 1964. The nature and assessment of heat flow from hydrothermal areas. N.Z. J. Geol. Geophys. 7, 155–171. Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Oxford University Press, New York. Elmarsdo´ ttir, A ´ ., Ingimarsdo´ ttir, M., Hansen, I´., O´ lafsson, J.S., Magnu´sson, S., 2003. Vegetation and invertebrates in six high-temperature geothermal areas in Iceland. Icelandic Museum of Natural History and University of Iceland Institute of Biology report (in Icelandic). Favara, R., Giammanco, S., Inguaggiato, S., Pecoraino, G., 2001. Preliminary estimate of CO2 output from Pantelleria Island volcano (Sicily, Italy): evidence of active mantle degassing. Appl. Geochem. 16, 883–894. Franz, G., Libscher, A., 2004. Physical and chemical properties of the epidote minerals – an introduction. In: Libscher, A., Franz, G. (Eds.), Reviews in Mineralogy and Geochemistry, vol. 56. Mineralogical Society of America and Geochemical Society, pp. 1–80. Franzson H., 2004. Reykjanes high-temperature geothermal system. Geological and geothermal model. Iceland GeoSurvey report I´SOR-2004/012 (in Icelandic). Franzson H., Thordarson S., Bjo¨rnsson G., Gudlaugsson S.Th., Richter B., Fridleifsson G.O´ ., Tho´rhallsson S., 2002. Reykjanes high-temperature field SW-Iceland. Geology and hydrothermal alteration of well RN-10. In: Proceedings of the 27th Workshop Geothermal Reservoir Engineering, Stanford University. Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J., Doukas, M.P., 2002. Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. 107 B9, 2189. Gı´slason, S.R., 2000. Carbon dioxide from Eyjafjallajo¨ kull and chemical composition of spring water and river water in the Eyjafjalljo¨kull – My´rdalsjo¨kull region. Science Institute, University of Iceland, Report RH-06-2000. Granieri, D., Chiodini, G., Marzocchi, W., Avino, R., 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Plan. Sci. Lett. 212, 167–179. Gudmundsdo´ ttir, A.L., 1988. Natural heat flow through surface in geothermal areas in the Nesjavellir area. University of Iceland 4th year honors thesis. Herna´ndez, P.A., Notsu, K., Salazar, J.M., Mori, T., Natale, G., Okada, H., Virgili, G., Shimoike, Y., Sato, M., Pe´rez, N.M., 2001a. Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 292, 83–86. Herna´ndez, P.A., Perez, N.M., Salazar, J.M., Nakai, S., Notsu, K., Wakita, H., 1998. Diffuse emissions of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophys. Res. Lett. 25, 3311–3314. Herna´ndez, P.A., Salazar, J.M., Shimoike, Y., Mori, T., Notsu, K., Pe´rez, N.M., 2001b. Diffuse emissios of CO2 from Miyakejima volcano, Japan. Chem. Geol. 177, 175–185. Jakobsson, S.P., Jo´nsson, J., Shido, F., 1978. Petrology of the Western Reykjanes Peninsula, Iceland. J. Petrol. 19, 669–705. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92 – a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 C to 1000 C. Comput. Geosci. 18, 899–947. Jo´nsson, J., 1968. Changes in the geothermal area at Reykjanes in 1967. National Energy Authority Report 10421 OST 5 (in Icelandic). Jo´nsson, J., 1983. Historic eruptions on the Reykjanes Peninsula. Na´ttu´rufraedingurinn 52, 127–139 (in Icelandic). Karlsdo´ ttir, R., 2005. TEM-measurements at Reykjanes 2004. Iceland GeoSurvey Report I´SOR-2005/002 (in Icelandic). Kerrick, D.M., 2001. Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev. Geophys. 39, 564– 585. Lewicki, J.L., Connor, C., St-Amand, K., Stix, J., Spinner, W., 2003. Self-potential, soil CO2 flux and temperature on Masaya volcano, Nicaragua. Geophys. Res. Lett. 30, 1817. Lonker, S.W., Franzson, H., Kristmannsdo´ ttir, H., 1993. Mineral– fluid interactions in the Reykjanes and Svartsengi geothermal systems, Iceland. Am. J. Sci. 293, 605–670. Marty, B., Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248. Mo¨ rner, N.A., Etiope, G., 2002. Carbon degassing of the lithosphere. Global Planet. Change 33, 185–203. Nehring, N.L., D’Amore, F., 1984. Gas chemistry of the Cerro Prieto, Mexico. Geothermics 13, 75–89. Notsu, K., Sugiyama, K., Hosoe, M., Uemura, A., Shimoike, Y., Tsunomori, F., Sumino, H., Yamamoto, J., Mori, T., He´rnandez, P.A., 2005. Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J. Volc. Geoth. Res. 139, 147–161. O´ skarsson, N., 1996. Carbon dioxide from large volcanic eruptions. Short term effects. In: Biological Society of Iceland. The carbon budget of Iceland Conference, Reykjavı´k 22–23 November 1966. Prog. and Abstr., p. 17 (In Icelandic). Pa´lmason, G., Saemundsson, K., 1974. Iceland in relation to Mid-Atlantic Ridge. Ann. Rev. Earth Plan. Sci. 2, 25–50. Pa´lmason, G., Johnsen, G.V., Torfason, H., Sæmundsson, K, Ragnars, K, Haraldsson, G.I., Halldo´rsson, G.K., 1985. Assessment of geothermal energy in Iceland. Orkustofnun OS-85076/JHD-10. Saemundsson, K., Jo´hannesson, H., 2004. Geothermal map of Iceland. Iceland GeoSurvey and Icelandic Energy Authority. Saemundsson, K., Tho´rhallsson, S., Bjo¨rnsson, G., Karlsdo´ ttir, R., Franzson, H., 2004. Siting of drillholes RN-17 to RN-21 at Reykjanes. Iceland GeoSurvey report I´ SOR-04088 (in Icelandic). Salazar, J.M.L., Herna´ndes, P.A., Pe´rez, N.M., Melia´n, G., A ´ lvarez, J., Segura, F., Notsu, K., 2001. Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys. Res. Lett. 28, 4275–4278. Sapper, K., 1908. On some Icelandic volcanic fissures and crater rows. Neu. Jahrb. Min. Geol. Pala¨ontol., 26 (in German). Schmidt, E., Grigull, U., 1979. Properties of Water and Steam in SI-units: 0–800 C, 0–1000 bar. Springer-Verlag, Berlin Heidelberg, R. Oldebourg, Mu¨nchen. Sigurgeirsson, M.A´ ., 1995. The younger Stampar eruption at Reykjanes. Na´ttu´rufraedingurinn 64, 211–230 (in Icelandic). Sigurgeirsson, M.A´ ., 2004. A chapter in the eruption history of Reykjanes: eruption episode two thousand years ago. Na´ttu´rufraedingurinn 72, 21–28 (in Icelandic). Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 3, 129– 149. Sorey, M.L., Colvard, E.M., 1994. Measurements of heat and mass flow from thermal areas in Lassen Volcanic National Park, California, 1984–1993. U.S.G.S. Water Resour. Invest. Rep., 94–4180-A. Stefa´nsson, A., Arno´ rsson, S., 2002. Gas pressures and redox reactions in geothermal fluids in Iceland. Chem. Geol. 190, 251–271. Sutton, O.G., 1953. Micrometeorology. McGraw-Hill, New York. Sveinbjo¨rnsdo´ ttir, A.E., 1991. composition of geothermal minerals from saline and dilute fluids – Krafla and Reykjanes, Iceland. Lithos 27, 301–315. Thorkelsson, Th., 1928. On thermal activity in Reykjanes. Rit Vı´sindafe´lags I´slendinga, 3. Werner, C., Brantley, S., 2003. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061. Werner, C., Brantley, S.L., Boomer, K., 2000. CO2 emissions related to the Yellowstone volcanic system 2. Statistical sampling, total degassing, and transport mechnanisms. J. Geophys. Res. 105, 10831–10846. Werner, C., Christenson, B.J., Scott, K., Britten, K., Kilgour, G., 2004. Monitoring CO2 emissions at White Island volcano, New Zealand: evidence for total decrease in magmatic mass and heat output. In: Wanty R.B., Seal II R.R. (Eds.), Proceedings of the 11th International Symposium Water– Rock Interaction, WRI-11, pp. 223–226. Wolfe, C.J., Bjarnason, I.Th., VanDecar, J.C., Solomon, S.C., 1997. Seismic structure of the Iceland mantle plume. Nature 385, 245–247. Zhao, Ping, A ´ rmannsson, H., 1996. Gas geothermometry in selected Icelandic geothermal fields with comparative examples from Kenya. Geothermics 25, 307–347. Th. Fridriksson et al. / Applied Geochemistry 21 (2006) 1551–1569 1569en
dc.description.fulltextreserveden
dc.contributor.authorFridriksson, T.en
dc.contributor.authorKristjansson, R.en
dc.contributor.authorArmannsson, H.en
dc.contributor.authorMargretardottir, E.en
dc.contributor.authorOlafsdottir, S.en
dc.contributor.authorChiodini, G.en
dc.contributor.departmentIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.departmentIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.departmentIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.departmentIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.departmentIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Icelanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIceland GeoSurvey grensasvegur 9, 108 Reykjavik-
crisitem.author.deptIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland-
crisitem.author.deptIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland-
crisitem.author.deptIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland-
crisitem.author.deptIceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1456.pdf3.25 MBAdobe PDF
Show simple item record

Page view(s) 20

256
checked on Mar 27, 2024

Download(s)

36
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric