Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2591
DC FieldValueLanguage
dc.contributor.authorallCollins, M.; Hadley Centre, Met Office, Exeter, United Kingdomen
dc.contributor.authorallBotzet, M.; Max-Planck-Institut für Meteorologie, Hamburg, Germanyen
dc.contributor.authorallCarril, A. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallDrange, H.; Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.authorallJouzeau, A.; CERFACS, Toulouse, Franceen
dc.contributor.authorallLatif, M.; Max-Planck-Institut für Meterologie, Hamburg, and Leibniz-Institut für Meereswissenschaften, Kiel, Germanyen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallOtteraa, O. H.; Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.authorallPohlmann, H.; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canadaen
dc.contributor.authorallSorteberg, A.; Bjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.authorallSutton, R.; Centre for Global Atmospheric Modelling, Reading, United Kingdomen
dc.contributor.authorallTerray, L.; CERFACS, Toulouse, Franceen
dc.date.accessioned2007-10-10T12:19:14Zen
dc.date.available2007-10-10T12:19:14Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2591en
dc.description.abstractEnsemble experiments are performed with five coupled atmosphere–ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales, albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofJ. Clim.en
dc.relation.ispartofseries7 / 19 (2006)en
dc.subjectDecadal Climateen
dc.subjectNorth Atlanticen
dc.titleInterannual to Decadal Climate Predictability in the North Atlantic: A Multi-Model-Ensemble Studyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1195-1203en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecastsen
dc.subject.INGV03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variabilityen
dc.identifier.doi10.1175/JCLI3654.1en
dc.relation.referencesBentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic meridional overturning circulation. Climate Dyn., 22, doi:10.1007/s00382-004-0397-x. Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1515. Boer, G. J., 2000: A study of atmosphere–ocean predictability on long timescales. Climate Dyn., 16, 469–477. Carril, A. F., A. Navarra, and S. Masina, 2004: Ocean, sea-ice, atmosphere oscillations in the Southern Ocean as simulated by the SINTEX coupled model. Geophys. Res. Lett., 31, L10309, doi:101029/2004GL019623. Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19, 671– 692. ——, and M. R. Allen, 2002: Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate, 15, 3104–3109. ——, and Sinha, B., 2003: Predictable decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett., 30, 1306, doi:10.1029/2002GLO16504. ——, S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81. Curry, R., R. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, doi:10.1038/nature02206. Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676. Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The climate version of ARPEGE/IFS: A contribution to the 1202 JOURNAL OF CLIMATE—SPECIAL SECTION VOLUME 19 French community climate modelling. Climate Dyn., 10, 249– 266. Dickson, R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long term coordinated changes in the convective activity of the North Atlantic. Progress in Oceanography, Vol. 38, Pergamon, 241–295. Dong, B., and R. T. Sutton, 2001: The dominant mechanisms of variability in Atlantic ocean heat transport in a coupled ocean–atmosphere GCM. Geophys. Res. Lett., 28, 2445–2448. Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 (C6), 12 609–12 646. Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamstø, and A. Sorteberg, 2003: Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Climate Dyn., 21, doi:10.1007/s00382-003-0317-5. Goddard, L., S. Mason, S. Zebiak, C. Ropelewski, R. Basher, and M. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 1111–1152. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168. Grötzner, A., M. Latif, A. Timmermann, and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean– atmosphere general circulation model. J. Climate, 12, 2607– 2624. Griffies, S. M., and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275, 181–184. Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567–582. Hirschi, J., J. Baehr, J. Marotzke, J. Stark, S. Cunningham, and J.-O. Beismann, 2003: A monitoring design for the Atlantic meridional overturning circulation. Geophys. Res. Lett., 30, 1413, doi:10.1029/2002GL016776. Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 1605–1614. Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Note du Pôle de Modélisation, Institut Pierre-Simon Laplace, No. 11, 91 pp. Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13, 3239–3260. Marsland, S., H. Haak, J. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91–127. Masina, S., P. Di Pietro, and A. Navarra, 2004: Interannual-todecadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23, doi:10.1007/s00382- 004-0453-6. Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 4463–4472. Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16, 123–146. Rodwell, M. J., and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128, 1413–1443. Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM 4: Model description and simulation of present day climate. Max-Planck-Institut für Meteorologie, Rep. 218, 90 pp. ——, and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Rep. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp. Roullet, G., and G. Madec, 2000: Salt conservation, free surface and varying volume: A new formulation for Ocean GCMs. J. Geophys. Res., 105, 23 927–23 942. Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107, 3118, doi:10.1029/2001JC000888. Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433– 3443. Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupled user guide version 2.4. Tech. Rep. TR/CMGC/00-10, CERFACS, 85 pp.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCollins, M.en
dc.contributor.authorBotzet, M.en
dc.contributor.authorCarril, A. F.en
dc.contributor.authorDrange, H.en
dc.contributor.authorJouzeau, A.en
dc.contributor.authorLatif, M.en
dc.contributor.authorMasina, S.en
dc.contributor.authorOtteraa, O. H.en
dc.contributor.authorPohlmann, H.en
dc.contributor.authorSorteberg, A.en
dc.contributor.authorSutton, R.en
dc.contributor.authorTerray, L.en
dc.contributor.departmentHadley Centre, Met Office, Exeter, United Kingdomen
dc.contributor.departmentMax-Planck-Institut für Meteorologie, Hamburg, Germanyen
dc.contributor.departmentNansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.departmentCERFACS, Toulouse, Franceen
dc.contributor.departmentMax-Planck-Institut für Meterologie, Hamburg, and Leibniz-Institut für Meereswissenschaften, Kiel, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentNansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.departmentDepartment of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canadaen
dc.contributor.departmentBjerknes Centre for Climate Research, Bergen, Norwayen
dc.contributor.departmentCentre for Global Atmospheric Modelling, Reading, United Kingdomen
dc.contributor.departmentCERFACS, Toulouse, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptHadley Centre, Met Office, Exeter, United Kingdom-
crisitem.author.deptMax-Planck-Institut für Meteorologie, Hamburg, Germany-
crisitem.author.deptNansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norway-
crisitem.author.deptCERFACS, Toulouse, France-
crisitem.author.deptMax-Planck-Institut für Meteorologie, Hamburg, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptNansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norway-
crisitem.author.deptDepartment of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada-
crisitem.author.deptBjerknes Centre for Climate Research, Bergen, Norway-
crisitem.author.deptCentre for Global Atmospheric Modelling, Department of Meteorology,University of Reading, U.K.-
crisitem.author.deptCERFACS, Toulouse, France-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
250.pdf1.37 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

136
checked on Feb 10, 2021

Page view(s) 10

303
checked on Apr 17, 2024

Download(s) 50

62
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric