Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2587
DC FieldValueLanguage
dc.contributor.authorallCapotondi, A.; NOAA/Earth System Laboratory, CIRES/Climate Diagnostics Center,en
dc.contributor.authorallWittenberg, A.; Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United Statesen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2007-10-09T10:16:49Zen
dc.date.available2007-10-09T10:16:49Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2587en
dc.description.abstractTropical Pacific interannual variability is examined in nine state-of-the-art coupled climate models, and compared with observations and ocean analyses data sets, the primary focus being on the spatial structure and spectral characteristics of El Nin˜o-Southern Oscillation (ENSO). The spatial patterns of interannual sea surface temperature (SST) anomalies from the coupled models are characterized by maximum variations displaced from the coast of South America, and generally extending too far west with respect to observations. Thermocline variability is characterized by dominant modes that are qualitatively similar in all the models, and consistent with the ‘‘recharge oscillator’’ paradigm for ENSO. The meridional scale of the thermocline depth anomalies is generally narrower than observed, a result that can be related to the pattern of zonal wind stress perturbations in the central-western equatorial Pacific. The wind stress response to eastern equatorial Pacific SST anomalies in the models is narrower and displaced further west than observed. The meridional scale of the wind stress can affect the amount of warm water involved in the recharge/discharge of the equatorial thermocline, while the longitudinal location of the wind stress anomalies can influence the advection of the mean zonal temperature gradient by the anomalous zonal currents, a process that may favor the growth and longer duration of ENSO events when the wind stress perturbations are displaced eastwards. Thus, both discrepancies of the wind stress anomaly patterns in the coupled models with respect to observations (narrow meridional extent, and westward displacement along the equator) may be responsible for the ENSO timescale being shorter in the models than in observations. The examination of the leading advective processes in the SST tendency equation indicates that vertical advection of temperature anomalies tends to favor ENSO growth in all the CGCMs, but at a smaller rate than in observations. In some models it can also promote a phase transition. Longer periods tend to be associated with thermocline and advective feedbacks that are in phase with the SST anomalies, while advective tendencies that lead the SST anomalies by a quarter cycle favor ENSO transitions, thus leading to a shorter period.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofOcean Modellingen
dc.relation.ispartofseries3-4 / 15 (2006)en
dc.subjectEl Nino phenomenaen
dc.subjectClimatic changesen
dc.subjectPermanent thermoclineen
dc.subjectWindsen
dc.subjectSurface temperatureen
dc.titleSpatial and temporal structure of Tropical Pacific interannual variability in 20th century coupled simulationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber274–298en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanographyen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysisen
dc.identifier.doi10.1016/j.ocemod.2006.02.004en
dc.relation.referencesAchutaRao, K., Sperber, K.R., 2002. Simulation of the El Nin˜o Southern oscillation: results from the coupled model intercomparison project. Climate Dyn. 19, 191–209. AchutaRao, K., Sperber, K.R., The CMIP modeling group, 2000. El Nin˜o Southern Oscillation in coupled GCMs. PCMDI Report 61, PCMDI, LLNL, University of California, Livermore, CA, 94550, USA. Alexander, M.A., Blade, I., Newman, M., Lanzante, J.R., Lau, N.-C., Scott, J.D., 2002. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate 15, 2205–2231. An, S.-I., Wang, B., 2000. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate 13, 2044–2055. An, S.-I., Jin, F.-F., Kang, I.-S., 1999. The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J. Meteorol. Soc. Jpn. 77, 1151–1160. Atlas, R., Hoffman, R.N., Bloom, S.C., Jusem, J.C., Ardizzone, J., 1996. A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Am. Meteorol. Soc. 77, 869–882. Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172. Cane, M.A., Zebiak, S.E., Dolan, S.C., 1986. Experimental forecasts of El Nin˜o. Nature 321, 827–832. Capotondi, A., Alexander, M.A., Deser, C., McPhaden, M.J., 2005. Anatomy and decadal evolution of the Pacific Subtropical–Tropical Cells (STCs). J. Climate 18, 3739–3758. Davey, M.K., Huddleston, M., Sperber, K.R., Model data contributors, 2000. STOIC: a study of coupled GCM climatology and variability in tropical ocean regions. STOIC Project Report, CLIVAR-WGSIP. Davey, M.K., Huddleston, M., Sperber, K.R., Model data contributors, 2002. STOIC: a study of coupled GCM climatology and variability in tropical ocean regions. Climate Dyn. 18, 403–420. Derber, J., Rosati, A., 1989. A global oceanic data assimilation system. J. Phys. Oceanogr. 19, 1333–1347. Deser, C., Phillips, A.S., Hurrel, J.W., 2004. Pacific interdecadal climate variability: linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate 17, 3109–3124. Deser, C., Capotondi, A., Saravanan, R., Phillips, A., 2005. Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, sub judice. Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall, London. Fedorov, A.V., Philander, S.G., 2000. Is El Nin˜o changing? Science 288, 1997–2002. Hannachi, A., Stephenson, D.B., Sperber, K.R., 2003. Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn. 20, 241–256. Hinkley, D., 1983. Jackknife methods. In: Kotz, S., Johnson, N.L., Read, C.B. (Eds.), Encyclopedia of Statistics, vol. 4. Wiley, New York. Hoerling, M., Kumar, A., 2003. The perfect ocean for drought. Science 299, 691–694. Jin, F.-F., 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829. Jin, F.-F., 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J. Atmos. Sci. 54, 830–847. Jin, F.-F., An, S.-I., 1999. Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett. 26, 2989–2992. Kalnay, E. et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472. Kirtman, B.P., 1997. Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate 10, 1690–1704. Kistler, R. et al., 2001. The NCEP–NCAR 50-year reanalyses: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–267. Latif, M. et al., 2001. ENSIP: the El Nin˜o simulation intercomparison project. Climate Dyn. 18, 255–276. Masina, S., Di Pietro, P., Navarra, A., 2004. Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn. 23, 531–546. McPhaden, M.J. et al., 1998. The Tropical ocean global atmosphere (TOGA) observing system: a decade of progress. J. Geophys. Res. 103 (14), 169–240. Meinen, C.S., McPhaden, M.J., 2000. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nin˜o and La Nin˜ a. J. Climate 13, 3551–3559. Schneider, E.K., Huang, B., Shukla, J., 1995. Ocean wave dynamics and El Nin˜o. J. Climate 8, 2415–2439. Trenberth, K.E., 1997. The definition of El Nin˜o. Bull. Am. Meteorol. Soc. 78, 2771–2777. Wang, W., McPhaden, M.J., 2000. The surface-layer heat balance in the equatorial Pacific Ocean. Part II: interannual variability. J. Phys. Oceanogr. 30, 2989–3008. Wittenberg, A.T., 2002. ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp. Wittenberg, A.T., Rosati, A., Lau, N.-C., Ploshay, J.J., 2006. GFDL’s CM2 global coupled climate models. Part 3: Tropical Pacific climate and ENSO. J. Climate. 19, 698–722. Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Nin˜o cycles. J. Geophys. Res. 90, 7129–7132.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCapotondi, A.en
dc.contributor.authorWittenberg, A.en
dc.contributor.authorMasina, S.en
dc.contributor.departmentNOAA/Earth System Laboratory, CIRES/Climate Diagnostics Center,en
dc.contributor.departmentGeophysical Fluid Dynamics Laboratory, Princeton, NJ, United Statesen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNOAA/Earth System Laboratory, CIRES/Climate Diagnostics Center,-
crisitem.author.deptGeophysical Fluid Dynamics Laboratory, Princeton, NJ, United States-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
618.pdf4.97 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

136
checked on Feb 10, 2021

Page view(s) 10

294
checked on Apr 20, 2024

Download(s)

19
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric