Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2584
DC FieldValueLanguage
dc.contributor.authorallTodesco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallNeri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallEsposti Ongaro, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallRosi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.date.accessioned2007-10-09T09:23:59Zen
dc.date.available2007-10-09T09:23:59Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2584en
dc.description.abstractNumerical simulation of pyroclastic density currents has developed significantly in recent years and is increasingly applied to volcanological research. Results from physical modeling are commonly taken into account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work, we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera. The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for each scenario. Simulations were performed along different topographic profiles to evaluate the effects of topographic barriers on flow propagation. Simulations highlighted interesting features associated with the presence of obstacles such as the development of backflows. Complex interaction between outward moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable protection to the region beyond.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofGeochem. Geophys. Geosyst.en
dc.relation.ispartofseries11 / 7 (2006)en
dc.subjectPhlegrean Fieldsen
dc.subjectmultiphase flowen
dc.subjectpyroclastic flowsen
dc.subjectdynamic pressureen
dc.subjectvolcanic hazarden
dc.subjectcalderaen
dc.titlePyroclastic flow dynamics and hazard in a caldera setting: application to Phlegrean Fields (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ11003en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2006GC001314en
dc.relation.referencesAlberico, I., L. Lirer, P. Petrosino, and R. Scandone (2002), A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy), J. Volcanol. Geotherm. Res., 116, 63–78. Barberi, F., G. Corrado, F. Innocenti, and G. Luongo (1984a), Phlegrean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area, Bull. Volcanol., 41, 1–22. Barberi, F., F. Innocenti, G. Luongo, M. Rosi, R. Santacroce, and R. Scandone (1984b), Il rischio vulcanico nei Campi Flegrei, CNR-GNV report, Gruppo Naz. per la Vulcanol., Cons. Naz. delle Ric., Rome. Baxter, P. J. (1990), Medical effects of volcanic eruptions: I, Main causes of death and injury, Bull. Volcanol., 52, 532– 544. Baxter, P. J., A. Neri, and M. Todesco (1998), Physical modeling and human survival in pyroclastic flows, Nat. Hazards, 17, 163–176. Baxter, P. J., R. Boyle, P. Cole, A. Neri, R. Spence, and G. Zuccaro (2005), The impact of pyroclastic surges on buildings at the eruption of the Soufrie`re Hills volcano, Montserrat, Bull. Volcanol., 67, 292–313. Cavazzoni, C., T. Esposti Ongaro, G. Erbacci, A. Neri, and G. Macedonio (2005), High performance computing simulations of pyroclastic flows, Comput. Phys. Comm., 169, 454– 456. Clarke, A., B. Voight, A. Neri, and G. Macedonio (2002), Transient dynamics of vulcanian explosions and column collapse, Nature, 415, 897–901. Cook, N. J. (1985), The Designer’s Guide to Wind Loading of Building Structures, Butterworths, London. Co´rdoba, G. (2005), A numerical model for the dynamics of pyroclastic flows at Galeras Volcano, Colombia, J. Volcanol. Geotherm. Res., 139, 59–71. Dartevelle, S. (2004), Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows, Geochem. Geophys. Geosyst., 5, Q08003, doi:10.1029/2003GC000636. Dartevelle, S., W. I. Rose, J. Stix, K. Kelfoun, and J. W. Vallance (2004), Numerical modeling of geophysical granular flows: 2. Computer simulations of plinian clouds and pyroclastic flows and surges, Geochem. Geophys. Geosyst., 5, Q08004, doi:10.1029/2003GC000637. Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2001), Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegrean Fields, southern Italy, Bull. Volcanol., 63, 433–461. Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2004a), Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy), J. Volcanol. Geotherm. Res., 133, 193–210. Dellino, P., R. Isaia, and M. Veneruso (2004b), Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy), J. Volcanol. Geotherm. Res., 133, 211–228. de Vita, S., et al. (1999), The Agnano-Monte Spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 91, 269–301. Di Muro, A., A. Neri, and M. Rosi (2004), Contemporaneous convective and collapsing eruptive dynamics: The transitional regime of explosive eruptions, Geophys. Res. Lett., 31, L10607, doi:10.1029/2004GL019709. Di Vito, M. A., L. Lirer, G. Mastrolorenzo, and G. Rolandi (1987), The Monte Nuovo eruption (Campi Flegrei, Italy), Bull. Volcanol., 49, 608–615. Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246. Dobran, F., A. Neri, and G. Macedonio (1993), Numerical simulations of collapsing volcanic columns, J. Geophys. Res., 98, 4231–4259. Dobran, F., A. Neri, and M. Todesco (1994), Assessing pyroclastic flow hazard at Vesuvius, Nature, 367, 551–554. D’Oriano, C., E. Poggianti, A. Bertagnini, R. Cioni, P. Landi, M. Polacci, and M. Rosi (2005), Changes in eruptive style during the A. D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): The role of syn-eruptive crystallization, Bull. Volcanol., 67, 601–621. Esposti Ongaro, T., A. Neri, M. Todesco, and G. Macedonio (2002), Pyroclastic flow hazard at Vesuvius from numerical modelling. II. Analysis of local flow variables, Bull. Volcanol., 64, 178–191. Esposti Ongaro, T., A. Neri, C. Cavazzoni, G. Erbacci, A. Clarke, and B. Voight (2006), A new high-performance 3D multiphase flow code for the simulation of collapsing columns and volcanic blasts, paper presented at Cities on Volcanoes 4, IAVCEI, Quito, Ecuador, 23–27 Jan. Fisher, R. V. (1990), Transport and deposition of pyroclastic surge across an area of high relief: The May 1980 eruption of Mount St Helens, Washington, Geol. Soc. Am. Bull., 102, 1038–1054. Herzog, M., H. F. Graf, C. Textor, and J. M. Oberhuber (1998), The effects of phase change of water on the development of volcanic plumes, J. Volcanol. Geotherm. Res., 87, 55–74. Isaia, R., M. D’Antonio, F. Dell’Erba, M. Di Vito, and G. Orsi (2004), The Astroni volcano: The only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 133, 171–192. Ishimine, Y. (2005), Numerical study of pyroclastic surges, J. Volcanol. Geotherm. Res., 139, 33–57. Kunii, D., and O. Levenspiel (1995), Fluidization Engineering, Elsevier, New York. Lirer, L., P. Petrosino, and I. Alberico (2001), Hazard assessment at volcanic fields: The Campi Flegrei case history, J. Volcanol. Geotherm. Res., 112, 53–74. Mason, P. J. (1994), Large-eddy simulation: a critical review of the technique, Q. J. R. Meteorol. Soc., 120, 1–26. Neri, A., and F. Dobran (1994), Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns, J. Geophys. Res., 99, 11,833–11,857. Neri, A., and D. Gidaspow (2000), Riser hydrodynamics: Simulation using kinetic theory, AIChE J., 46, 52–67. Neri, A., and G. Macedonio (1996), Numerical simulation of collapsing volcanic columns with particles of two sizes, J. Geophys. Res., 101, 8153–8174. Neri, A., P. Papale, and G. Macedonio (1998), The role of magma composition and water content in explosive eruptions: II. Pyroclastic dispersion dynamics, J. Volcanol. Geotherm. Res., 87, 95–115. Neri, A., P. Papale, D. Del Seppia, and R. Santacroce (2002), Couplet conduit and atmospheric dispersion dynamics during the Plinian phase of the AD 79 Vesuvius eruption, J. Volcanol. Geotherm., Res., 120, 141–160. Neri, A., T. Esposti Ongaro, G. Macedonio, and D. Gidaspow (2003), Multiparticle simulation of collapsing volcanic columns and pyroclastic flow, J. Geophys. Res., 108(B4), 2202, doi:10.1029/2001JB000508. Nuovo Colombo (1990), Carichi nelle costruzioni, manuale dell’ingegnere, Hoepli, Milan, Italy. Oberhuber, J. M., M. Herzog, H. F. Graf, and K. Schwanke (1998), Volcanic plume simulation on a large scale, J. Volcanol. Geotherm. Res., 87, 29–53. Orsi, G., S. de Vita, and M. Di Vito (1996), The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration, J. Volcanol. Geotherm. Res., 74, 179–214. Orsi, G., M. Di Vito, and R. Isaia (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530. Ort, M. H., G. Orsi, L. Pappalardo, and R. V. Fisher (2003), Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy, Bull. Volcanol., 65, 55–72. Papale, P. (2001), Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing, J. Geophys. Res., 106, 11,043– 11,065. Papale, P. (2004), Simulation of eruptive scenarios at Phlegrean Fields based on field, laboratory and numerical studies and implication for volcanic hazard, Final Report of the INGV 2001–2003 Frame Program, Ist. Naz. di Geofis. e Vulcanol., Bologna, Italy. Piochi, M., G. Mastrolorenzo, and L. Pappalardo (2005), Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy, Bull. Volcanol., 67, 663–678. Romano, C., D. Giordano, P. Papale, V. Mincione, D. B. Dingwell, and M. Rosi (2003), The dry and hydrous viscosities of silicate melts from Vesuvius and Phlegrean Fields, Chem. Geol., 202, 23–38. Rosi, M., and R. Santacroce (1984), Volcanic hazard assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data, Bull. Volcanol., 47, 359–370. Rosi, M., and A. Sbrana (Eds.) (1987), The Phlegrean Fields, ‘‘La Ricerca Scientifica,’’ vol. 114, Cons. Naz. delle Ric., Rome. Rosi, M., A. Sbrana, and C. Principe (1983), The Phlegraean Fields: Structural evolution, volcanic history and eruptive mechanisms, J. Volcanol. Geotherm. Res., 17, 273–288. Rossano, S., G. Mastrolorenzo, and G. De Natale (2004), Numerical simulation of pyroclastic density currents on Campi Flegrei topography: A tool for statistical hazard estimation, J. Volcanol. Geotherm. Res., 132, 1–14. Sheridan, M. F., and M. C. Malin (1983), Application of computer assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari and Vesuvius, J. Volcanol. Geotherm. Res., 17, 187–202. Suzuki, Y. J., T. Koyaguchi, M. Ogawa, and I. Hachisu (2005), A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model, J. Geophys. Res., 110, B08201, doi:10.1029/2004JB003460. Todesco, M., A. Neri, T. Esposti Ongaro, P. Papale, G. Macedonio, R. Santacroce, and A. Longo (2002), Pyroclastic flow hazard at Vesuvius from numerical modelling. I. Large scale dynamics, Bull. Volcanol., 64, 155–177. Valentine, G. A. (1998), Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects, J. Volcanol. Geotherm. Res., 87, 117–140. Valentine, G. A., and K. H. Wohletz (1989), Numerical models of Plinian eruption columns and pyroclastic flows, J. Geophys. Res., 94, 1867–1887. Walker, J. P. L. (1981), The Waimihia and Hatepe Plinian deposits from the rhyolitic Taupo volcanic centre, N. Z. F., Geol. Geophys., 24, 305–324.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTodesco, M.en
dc.contributor.authorNeri, A.en
dc.contributor.authorEsposti Ongaro, T.en
dc.contributor.authorPapale, P.en
dc.contributor.authorRosi, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-5939-0985-
crisitem.author.orcid0000-0002-3536-3624-
crisitem.author.orcid0000-0002-6663-5311-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
924.pdf5.91 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

22
checked on Feb 10, 2021

Page view(s) 50

232
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric