Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2582
DC FieldValueLanguage
dc.contributor.authorallMarzocchi, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallZaccarelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-10-09T09:13:31Zen
dc.date.available2007-10-09T09:13:31Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2582en
dc.description.abstractThe statistical modeling of the time-size distribution of volcanic eruptions is a fundamental tool to understand better the physics of the eruptive process, and to make reliable forecasts [Newhall and Hoblitt, 2002; Connor et al., 2003; Marzocchi et al., 2004a; Sparks and Aspinall, 2004]. Eruption forecasting is commonly associated to different timescales (short-, intermediate-, and long-term; see definition by Newhall and Hoblitt [2002]). Regardless of the time frame, the statistical modeling of the past behavior of a volcano is a key ingredient for quantitative forecasting (usually, but not necessarily, over long time intervals) when the volcano has an almost stationary state (for instance, it is dormant). In this case, monitoring data are not particularly informative of the future evolution of the system, at least until the volcano becomes restless and/or changes its stationary state. Hereinafter, the terms ‘‘eruption forecasting’’ and ‘‘volcanic hazard’’ refer to this stationary case. [3] The main difficulties in providing a general model of eruptive activity are linked to the existence of different types of volcanic activity, to the paucity of eruptive data for most volcanoes, and to the intrinsic complexity of eruptive processes. As a consequence, most of the past papers devoted to this issue are focused on single (or very few) volcanoes [e.g., Wickman, 1976; Klein, 1982; Burt et al., 1994; Bebbington and Lai, 1996; Marzocchi, 1996; Connor et al., 2003; Gusev et al., 2003; Sandri et al., 2005] where detailed eruptive catalogs exist. This approach limits the generality of the results. We cannot know if the behavior of the volcano analyzed represents a generic feature of a specific type of volcanism, or if it is peculiar of the volcano itself. Under this perspective, part of the different statistical distributions found by analyzing single eruptive catalogs can be explained by the existence of some peculiarities in volcanic activity. [4] One way to overcome this drawback, which we use here, is to perform a common analysis on data from several volcanoes. In particular, we test the Poisson hypothesis in the time domain, and the reliability of time-size distributions such as the time predictable model and size predictable model. The results obtained are then used to build a quantitative model of the statistical time-size distribution for some classes of volcanic activities that can be used for volcanic hazard assessment.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/ 111 (2006)en
dc.subjectquantitative modelen
dc.subjecteruptionsen
dc.titleA quantitative model for the time-size distribution of eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB04204en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2005JB003709en
dc.relation.referencesBak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A, 38, 364– 374. Behncke, B., M. Neri, and A. Nagay (2005), Lava flow hazard at Mount Etna (Italy): New data from a GIS-based study, in Kinematics and Dynamics of Lava Flows, edited by M. Manga and G. Ventura, Spec. Pap. Geol. Soc. Am., 396, 187–205. Bebbington, M. S., and C. D. Lai (1996), Statistical analysis of New Zealand volcanic occurrence data, J. Volcanol. Geotherm. Res., 74, 101–110. Bender, B. (1983), Maximum likelihood estimation of b values for magnitude grouped data, Bull. Seismol. Soc. Am., 73, 831– 851. Burt, M. L., G. Wadge, and W. A. Scott (1994), Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire, Bull. Volcanol., 56, 87–97. Coles, S. G., and R. S. J. Sparks (2006), Extreme value methods for modeling historical series of large volcanic magnitudes, in Statistics in Volcanology, Geol. Soc., London, in press. Connor, C. B., R. S. J. Sparks, R. M. Mason, C. Bonadonna, and S. R. Young (2003), Exploring links between physical and probabilistic models of volcanic eruptions: The Soufriere Hills volcano, Montserrat, Geophys. Res. Lett., 30(13), 1701, doi:10.1029/2003GL017384. Cox, D. R., and P. A. W. Lewis (1966), The Statistical Analysis of Series of Events, Methuen, New York. Cox, D. R., and A. Stuart (1955), Some quick sign tests for trend in location and dispersion, Biometrika, 42, 80– 95. Draper, N. R., and H. Smith (1998), Applied Regression Analysis, John Wiley, Hoboken, N. J. Gibbons, J. D. (1971), Non-parametric Statistical Inference, 306 pp., McGraw-Hill, New York. Gusev, A. A., V. V. Ponomareva, O. A. Braitseva, and I. V. Melekestsev (2003), Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products, J. Geophys. Res., 108(B2), 2126, doi:10.1029/2001JB000312. Huppert, H. E., and A. W. Woods (2002), the role of volatiles in magma chamber dynamics, Nature, 420, 493–495. Kalbfleisch, J. D. (1985), Probability and Statistical Inference, 2nd ed., 2 vols., Springer, New York. Klein, F. W. (1982), Patterns of historical eruptions at Hawaiian volcanoes, J. Volcanol. Geotherm. Res., 12, 1 – 35. Lay, T., and T. C. Wallace (1995), Modern Global Seismology, Elsevier, New York. Lockwood, J. P., and P. W. Lipman (1987), Holocene eruptive history of Mauna Loa volcano, in Volcanism in Hawaii, edited by R.W. Decker, T. L. Wright, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1350, vol. 1, 509– 535. Macdonald, G. A., A. T. Abbott, and F. L. Peterson (1986), Volcanoes in the Sea: The Geology of Hawaii, 2nd ed., pp. 80–81, Univ. of Hawaii Press, Honolulu. Marzocchi, W. (1996), Chaos and stochasticity in volcanic eruptions: the case of Mt. Etna and Vesuvius, J. Volcanol. Geotherm. Res., 70, 205– 212. Marzocchi, W. (2002), Remote seismic influence on large explosive eruptions, J. Geophys. Res., 107(B1), 2018, doi:10.1029/2001JB000307. Marzocchi, W., L. Sandri, and E. Boschi (2003), On the validation of earthquake-forecasting models: the case of pattern recognition algorithms, Bull. Seismol. Soc. Am., 93, 1994– 2004. Marzocchi, W., L. Sandri, P. Gasparini, C. Newhall, and E. Boschi (2004a), Quantifying probabilities of volcanic events: The example of volcanic hazard at Mt. Vesuvius, J. Geophys. Res., 109, B11201, doi:10.1029/ 2004JB003155. Marzocchi, W., L. Zaccarelli, and E. Boschi (2004b), Phenomenological evidence in favor of a remote seismic coupling for large volcanic eruptions, Geophys. Res. Lett., 31, L04601, doi:10.1029/2003GL018709. Newhall, C. G. (2003), ‘‘Restless’’ isn’t always dangerous and ‘‘quiet’’ isn’t always reassuring!, paper presented at Cities on Volcanoes 3, Univ. of Hawaii, Hilo, 14–18 July. Newhall, C. G., and R. P. Hoblitt (2002), Constructing event trees for volcanic crises, Bull. Volcanol., 64, 3 – 20, doi:10.1007/s004450100173. Newhall, C. G., and S. Self (1982), The volcanic explosivity index (VEI): An estimate of the explosive magnitude for historical eruptions, J. Geophys. Res., 87, 1231–1238. Newhall, C. G., R. S. Punongbayan, and T. M. Gerlach (1994), Tight and leaky volcanoes: Implications for forecasting explosive eruptions, in Large Explosive Eruptions, Atti Conv. Lincei, 112, 13– 21. Quareni, F., and F. Mulargia (1993), Modeling of closure of volcanic conduits with an application to Mount Vesuvius, J. Geophys. Res., 98, 4221– 4229. Sandri, L., W. Marzocchi, and P. Gasperini (2005), Some insights on the occurrence of recent volcanic eruption of Mount Etna volcano (Sicily, Italy), Geophys. J. Int., 163, 1203 – 1218, doi:10.1111/j.1365- 246X.2005.02757.x. Scandone, R., L. Giacomelli, and P. Gasparini (1993), Mount Vesuvius: 2000 years of volcanological observations, J. Volcanol. Geotherm. Res., 58, 5 – 25. Simkin, T., and L. Siebert (1994), Volcanoes of the World, Geosciences, Tucson, Ariz. Sornette, A., J. Dubois, J. L. Cheminee, and D. Sornette (1991), Are sequences of volcanic eruptions deterministically chaotic?, J. Geophys. Res., 96, 11,931– 11,945. Sparks, R. S. J., and W. Aspinall (2004), Volcanic activity: Frontiers and challenges in forecasting, prediction, and risk assessment, State of the Planet: Frontiers and Challenges in Geophysics, Geophys. Monogr. Ser., vol. 150, edited by R. S. J. Sparks and C. J. Hawkesworth, pp. 359– 374, AGU, Washington, D. C. Wickman, F. E. (1976), Markov models of repose-period patterns of volcanoes, in Random Process in Geology, pp. 135–161, Springer, New York.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMarzocchi, W.en
dc.contributor.authorZaccarelli, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-9114-1516-
crisitem.author.orcid0000-0002-4053-7625-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
801.pdf389.64 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

63
checked on Feb 10, 2021

Page view(s)

142
checked on Apr 20, 2024

Download(s)

28
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric