Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2471
DC FieldValueLanguage
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHerrmann, R. B.; Department of Earth and Atmospheric Sciences, Saint Louis Universityen
dc.contributor.authorallGok, R.; Lawrence Livermore National Laboratory, Earth Sciences Divisionen
dc.contributor.authorallSorensen, M. B.; Department of Earth Science, University of Bergen,en
dc.date.accessioned2007-09-14T10:07:51Zen
dc.date.available2007-09-14T10:07:51Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2471en
dc.description.abstractPredictive relationships for the ground motion in the Marmara region (northwestern Turkey) are parametrized after regressing three-component waveforms from regional earthquakes, in the frequency range: 0.4–15.0 Hz, and in the distance range: 10–200 km. The data set consists of 2400 three-component recordings from 462 earthquakes, recorded at 53 stations. Moment magnitudes, Mw, range between 2.5 and 7.2. The largest event for which we have waveforms available (Mw 7.2) occurred in Duzce on 1999 November 12. The aftershocks of that earthquake, together with the aftershocks of the 1999 August 17 Izmit event (Mw = 7.4), are included in the dataset. Regressions are performed, independently, on Fourier velocity spectra and on peak ground velocities, for a large number of sampling frequencies. A simple model is used to relate the logarithm of the measured ground motion to excitation, site, and propagation terms. Results obtained for peak velocities are used to define a piecewise continuous geometrical spreading function, g(r), a frequency-dependent Q(f ), and a distance-dependent duration function. The latter is used, through random vibration theory (RVT), in order to predict time-domain characteristics (i.e. peak values) of the ground motion. The complete model obtained for the peak ground motion was used to match the results of the regressions on the Fourier amplitudes. Fourier velocity spectra for the combined horizontal motion are best fit by a hinged quadrilinear geometrical spreading function for observations in the 10–200 km hypocentral distance ranges as a function of frequency: f < 1.0 Hz, r−1.2 for r ≤ 30 km; r−0.7 for 30 < r ≤ 60 km; r−1.4 for 60<r ≤100 km; r−0.1 for r >100, f ≥1.0 Hz, r−1.0 for r ≤30 km; r−0.6 for 30<r ≤ 60 km; r−0.9 for 60<r ≤100 km; r−0.1 for r >100 km. The frequency-dependent crustal shearwave quality factor Q (f ) coefficient Q( f )=180 f 0.45. The T (5–75 per cent) duration window provides good agreement between observed and predicted peak values. By modelling the behaviour of the small earthquakes at high frequency, we also quantified a regional parameter κ = 0.055 s. Spectral models with one single-corner frequency (Brune), and with two-corner frequencies (Atkinson and Silva) fit the observed high-frequency excitation levels equallywell, whereas the model by Atkinson and Silva fits the low-frequency observations slightly better than Brune’s. RVT is used to predict the absolute levels of ground shaking, following Boore’s implementation of the stochastic ground motion model (Boore’s SMSIM codes). Our regional empirical predictive relationships are compared to the ones adopted in several regions of the world, from California to Western United States.en
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.relation.ispartofseries/166 (2006)en
dc.subjectattenuationen
dc.subjectground motion scalingen
dc.subjectground motion scalingen
dc.subjectTurkeyen
dc.titleGround motion scaling in the Marmara region, Turkeyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber635-651en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1111/j.1365-246X.2006.02971.xen
dc.relation.referencesAmbraseys, N.N., 1970. Some characteristic features of the Anatolian fault zone, Tectonophysics, 9, 65–143. Ambraseys, N.N., 1975. Studies in historical seismicity and tectonics, Geodynamics Today, Royal Soc. Publ., London. Ambraseys, N.N., Simpson, K.A. & Bommer, J.J., 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering and Structural Dynamics, 25, 371–400. Anderson, J.G. & Lei, Y., 1994. Nonparametric description of peak acceleration as a function of magnitude, distance, and site in Guerrero, Mexico, Bull. seism. Soc. Am., 84, 1003–1017. Aki, K. & Richards, P., 2002. Quantitative Seismology, 2nd edn, University Science Books, Sausalito, CA, p. 700. Akinci, A., Malagnini, L., Herrmann, R.B, Pino, N.A., Scognamiglio, L. & Eyidogan, H., 2001. High-Frequency Ground Motion in the Erzincan Region, Turkey: Inferences from Small Earthquakes, Bull. seism. Soc. Am., 91(6), 1446–1455. Akyol, N., Akinci, A. & Eyidogan, H., 2002. Separation of source, propagation and site effects from observed s-wave of bursa city and its vicinity in the north-western Anatolian Fault Zone, Turkey, Pure appl. Geophys., 159 (6), 1253–1269. Atkinson, G.M., 1993. Earthquake source spectra and attenuation in southeastern Canada, University of Western Ontario, London, Ontario, PhD thesis. Atkinson, G.M. & Boore, D.M., 1995. Ground-motion relations for eastern North America, Bull. seism. Soc. Am., 85, 17–30. Atkinson, G.M. & Silva,W., 1997. An Empirical study of earthquake source spectra for California earthquakes, Bull. seism. Soc. Am., 87, 97–113. Atkinson, G.M.&Silva,W., 2000. Stochastic modeling of California Ground Motion, Bull. seism. Soc. Am., 90, 255–274. Barka, A., 1992. The North Anatolian Fault Zone, Annales Tetonicae, Suppl. To Vol. VI: 164–195. Barka, A.A., 1996. Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967, Bull. seism. Soc. Am., 86(5), 1238–1254. Barka, A.A., 1997. Neotectonics of the Marmara Region, in Active tectonics of Northwestern Anatolia-The MarmaraProject, pp. 55–88, eds Schindler, C. & Pfister, M., VDF, ETH Zurich. Bartels, R.H. & Conn, A.R., 1980. Linearly constrained discrete L 1 problems, Transactions of the ACM on Mathematical Software, 6(4), 594– 608. Baskoutas I., Panopoulou, G. & Rontoyanni, Th. 2000. The seismic attenuation in two regions with different geological aspect, Boll. Geof. Theor. Appl., 41(3), 233–242. Bodin, P., Malagnini, L. & Akinci, A., 2004. Ground-motion scaling in the Kachchh Basin, India, deduced from aftershocks of the 2001 Mw 7.6 Bhuj Earthquake, Bull. seism. Soc. Am., 94(5), 1658–1669. Boore,D.M., 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. seism. Soc. Am., 73, 1865–1894. Boore, D.M. & Joyner,W.B., 1984. A Note on the Use of Random Vibration Theory to predict peak amplitudes of transient signals, Letter to the Editor, Bull. seism. Soc. Am., 74, 2035–2039. Boore, D.M., 1986. Short-period P- and S-wave radiation from large earthquakes: implications for spectral scaling relations, Bull. seism. Soc. Am., 76, 43–64. Boore,D.M.&Joyner,W.B., 1991. Estimation of ground motion at deep-soil sites in eastern North America, Bull. seism. Soc. Am., 81, 2167–2185. Boore,D.M., 1996. SMSIM-Fortran programs for simulating ground motion from earthquakes: version 1.0, US Geological Survey open-file report 96– 80-A, 73 p. Boore, D.M.&Joyner,W.B., 1997. Site amplifications for generic rock sites, Bull. seism. Soc. Am., 87, 327–341. Boore, D.M., Joyner, W.B. & Fumal, T.E., 1997. Equations for Estimating horizontal response spectra and peak acceleration from Western North American earthquakes: a summary of recentwork, Seism. Res. Lett., 68(1), 128–153. Boztepe-G¨uney, A. & Horasan, G., 2002. Enhanced ground motions due to large-amplitude critical reflections (SmS) in the Sea of Marmara, Geophys. Res. Lett., 29, 9–1/9–4. Brune, J., 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes, J. geophys. Res., 75, 4997–5009. Brune, J., 1971. Correction, J. geophys. Res., 76, 5002. Campell, W.K., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo- absolute acceleration response spectra, Seis. Res. Lett., 68(1), 128–154. Celebi, M., Akkar, S., Gulerce,U., Sanli, A., Bundock, H.&Salkin, A., 2001. Main shock and aftershock records of the 1999 Izmit and Duzce, Turkey earthquakes. USGS/OFDA project [USGS project no: 1–7460-63170]. http://geopubs.wr.usgs.gov/open-file/of01–163/ Durukal, E. & C¸ ataly¨urekli, Y., 2004. Spectral Analysis of Source Parameters of the 1999 Kocaeli and D¨uzce Earthquake Aftershock Sequences, proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004 August 1–6. Gok, R. & Hutchings, L., 2006. Source Parameters and Scaling Relations for 1999 North Anatolian Fault Zone Aftershocks, in preparation. Gunduz, H.,Ayse, K.,Aysun,B.&Niyazi,T., 1998. S-wave attenuation in the Marmara region, northwestern Turkey, Geophys. Res. Lett., 25, 2733– 2736. Harmsen, S., 1997. Estimating the diminution of shear-wave amplitude with distance: application to the Los Angeles, California, Urban Area, Bull. seism. Soc. Am., 87, 888–903. Herrmann, R.B., 2000. Comparative ground motion studies, USGS Award Number: 1434-HQ-97-GR03090. 80. Herrmann, R.B., 1985. An extension of Random Vibration Theory estimates of strong ground motion to large earthquakes, Bull. Seis. Soc. Am., 75, 1447–1453. Hubert-Ferrari, A., Barka, A., Jacques, E., Nalbant, S.S., Meyer, B., Armijo, R., Tapponier, P. & King, G.C.P., 2000. Seismic hazard in the Sea of Marmara following the Izmit earthquake, Nature, 404, 269– 272. Jeon, Y.S., 2000. High frequency earthquake ground motion scaling in Utah, M.S. Thesis, Saint Louis University. Kramer, S.L., 1996. Geotechnical Earthquake Engineering, Prentice Hall. Inc. Upper Saddle River, New Jersey, pp 653. Le Pichon, X. et al., 2001. The active Main Marmara Fault, Earth planet. Sci. Lett., 192, 595–616. McKenzie, D., 1972. Active tectonics of the Mediterranean region, Geophys J. R. astr. Soc., 30(2), 109–185. Malagnini, L., Herrmann, R.B. & Koch, K., 2000a. Regional ground motion in scaling in Central Europe, Bull. seism. Soc. Am., 90, 1052– 1061. Malagnini, L., Herrmann, R.B. & Di Bona, M., 2000b. Ground motion scaling in the Apennines (Italy), Bull. seism. Soc. Am., 90, 1062–1081. Malagnini, L., Akinci, A., Herrmann, R.B., Pino, N.A. & Scognamiglio, L., 2002. Characteristics of the ground motion in Northeastern Italy, Bull. seism. Soc. Am., 26, 2186–2204. Mayeda, K.,G¨ok, R.,Walter,W.R.&Hofstetter, A., 2005. Evidence for Non- Constant Energy/Moment Scaling From Coda-Derived Source Spectra, Geophys. Res. Lett., 32, L10306, doi:10.1029/2005GL022405. Michel, G., 1994. Neo-kinematics along the North-Anatolian Fault (Turkey), PhD thesis, T¨ubinger geowiss. Arb., Reihe A 16. Nalbant, S., Hubert, A.&King, G.C.P., 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea, J. geophys. Res., 103(B10), 24 469–24 486. Neugebauer, J., Loffler, M., Berckhemer, H. & Yatman, A., 1997. Seismic observations at an overstep of the western North-Anatolian Fault (Abant- Sapanca region, Turkey), Geol. Rund., 86, 93–102. Okay, A.I., Ozcan, A.K., Imren, C., Guney, A.B., Demirbag, E. & Kuscu, I., 2000. Active faults and evolving strike–slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study, Tectonophysics, 321, 189–218. Orgulu, G.&Aktar, M., 2001. Regional Moment Tensor Inversion for Strong Aftershocks of the August 17, 1999 Izmit Earthquake (Mw=7.4), Geophys. Res. Lett., 28(2), 371–374. Ozbey, C., Sari, A., Manuel, L., Erdik, M. & Fahjan, Y., 2004. An empirical attenuation relationship for Northwestern Turkey ground motion using a random effects approach, Soil Dynamics and Earthquake Engineering, 24, 115–125. Parsons, T., 2000. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation, Science, 288, 661–665. Raoof, M., Herrmann, R.B. & Malagnini, L., 1999. Attenuation and excitation of three-component ground motion in Southern California, Bull. seism. Soc. Am., 89, 888–902. Sadigh, K., 1997. Attenuation relationships for shallow crustal earthquakes based on California strong motion data, Seism. Res. Lett., 68(1), 180–189. Stein, R.S., Barka, A.A. & Dietrich J.H., 1997. Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering Geophys. J. Int., 128, 594–604. Straub, C. & Kahle, H.G., 1995. Active crustal deformation in the Marmara sea region, N.W. Anatolia, inferred from GPS measurements, Geophs. Res. Lett., 22(18), 2533–2536. Toro, G.R.&McGuire, R.K., 1987. An investigation into earthquake ground motion characteristics in eastern north America, Bull. seism. Soc. Am., 77, 468–489. Sengor, A.M.C., Gorur, N. & Saroglu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike-Slip Faulting and Basin Formation, Vol. 37, pp. 227–264, eds Biddke, K.T. & Christie-Blick, N., Spec. Publ. Soc. Econ. Paleont. Miner., Tulsa. The World Bank, Turkey, 1999. Marmara Earthquake Assessment, from the World Wide Web http://www.worldbank.org, September 14, 1999 and http://www.imf.org/external/NP/LOI/1999/092999. HTM.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorAkinci, A.en
dc.contributor.authorMalagnini, L.en
dc.contributor.authorHerrmann, R. B.en
dc.contributor.authorGok, R.en
dc.contributor.authorSorensen, M. B.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentLawrence Livermore National Laboratory, Earth Sciences Divisionen
dc.contributor.departmentDepartment of Earth Science, University of Bergen,en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptLawrence Livermore National Laboratory, Earth Sciences Division-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.orcid0000-0002-8589-7480-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1288.pdf4.21 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

28
checked on Feb 10, 2021

Page view(s) 50

212
checked on Apr 24, 2024

Download(s)

30
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric