Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2466
DC FieldValueLanguage
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCatalli, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-09-14T07:36:30Zen
dc.date.available2007-09-14T07:36:30Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2466en
dc.description.abstractThe phenomenon of earthquake clustering, i.e., the increase of occurrence probability for seismic events close in space and time to other previous earthquakes, has been modeled both by statistical and physical processes. From a statistical viewpoint the so-called epidemic model (ETAS) introduced by Ogata in 1988 and its variations have become fairly well known in the seismological community. Tests on real seismicity and comparison with a plain time-independent Poissonian model through likelihood-based methods have reliably proved their validity. On the other hand, in the last decade many papers have been published on the so-called Coulomb stress change principle, based on the theory of elasticity, showing qualitatively that an increase of the Coulomb stress in a given area is usually associated with an increase of seismic activity. More specifically, the rate-and-state theory developed by Dieterich in the ′90s has been able to give a physical justification to the phenomenon known as Omori law. According to this law, a mainshock is followed by a series of aftershocks whose frequency decreases in time as an inverse power law. In this study we give an outline of the above-mentioned stochastic and physical models, and build up an approach by which these models can be merged in a single algorithm and statistically tested. The application to the seismicity of Japan from 1970 to 2003 shows that the new model incorporating the physical concept of the rate-and-state theory performs not worse than the purely stochastic model with two free parameters only. The numerical results obtained in these applications are related to physical characters of the model as the stress change produced by an earthquake close to its edges and to the A and σ parameters of the rateand- state constitutive law.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofTectonophysicsen
dc.relation.ispartofseries/417 (2006)en
dc.subjectEarthquake interactionen
dc.subjectRate-and-stateen
dc.subjectTriggeringen
dc.subjectClusteringen
dc.subjectEpidemic modelen
dc.subjectLikelihooden
dc.titlePhysical and stochastic models of earthquake clusteringen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber141-153en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.identifier.doi10.1016/j.tecto.2005.05.052en
dc.relation.referencesBelardinelli, M.E., Bizzarri, A., Cocco, M., 2003. Earthquake triggering by static and dynamic stress change. J. Geophys. Res. 108, 2135. doi:10.1029/2002JB001779. Boatwright, J., Cocco, M., 1996. Frictional constraints on crustal faulting. J. Geophys. Res. 101, 13895–13909. Console, R., Murru, M., 2001. A simple and testable model for earthquake clustering. J. Geophys. Res. 106, 8699–8711. Console, R., Murru, M., Lombardi, A.M., 2003. Refining earthquake clustering models. J. Geophys. Res. 108, 2468. doi:10.1029/ 2002JB002130. Console, R., Catalli, F., submitted for publication. A physical model for aftershocks triggered by dislocation on a rectangular fault. Ann. Geophys. Dieterich, J.H., 1986. A model for the nucleation of earthquake slip, Earthquake Source Mechanics. Geophys. Monogr. Ser. 37, 36–49. Dieterich, J.H., 1992. Earthquake nucleation on faults with rate and state dependent strength. Tectonophysics 211, 115–134. Dieterich, J.H., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601–2618. Dieterich, J.H., 1995. Earthquake simulations with time-dependent nucleation and long-range interactions. Nonlinear Process. Geophys. 2, 109–120. Dieterich, J.H., Cayol, V., Okubo, P., 2000. The use of earthquake rate changes as a stress meter at Kilauea volcano. Nature 408, 457–460. doi:10.1038/35044054. Felzer, K.R., Becker, T.W., Abercrombie, R.E., Ekstrom, G., Rice, J.R., 2002. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake. J. Geophys. Res. 107 (B9), 2190. doi:10.1029/2001JB000911.2002. Gomberg, J., 2001. The failure of earthquake failure models. J. Geophys. Res. 106 (B8), 16253–16263. Gomberg, J., Beeler, N., Blanpied, M., Bodin, P., 1998. Earthquake triggering by transient and static deformations. J. Geophys. Res. 103, 24411–24426. Gomberg, J., Beeler, N., Blanpied, M., 2000. On rate and state and Coulomb failure models. J. Geophys. Res. 105, 7857–7871. Harris, R.A., 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res. 103, 24347–24358. Harris, R.A., Simpson, R.W., 1998. Suppression of large earthquakes by stress shadows: a comparison of Coulomb and rate-and-state failure. J. Geophys. Res. 103, 24439–24451. Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. J. Geophys. Res. 84, 2348–2350. 152 R. Console et al. / Tectonophysics 417 (2006) 141–153 Helmstetter, A., Sornette, D., 2002. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res. 107 (B10), 2237. doi:10.1029/2001JB001580. Helmstetter, A., Kagan, Y.Y., Jackson, D.D., 2005. Importance of small earthquakes for stress transfers and earthquake triggering. J. Geophys. Res. 110, B05S08. doi:10.1029/2004JB003286. Keilis-Borok, I., 1959. On estimation of the displacement in an earthquake source and of source dimensions. Ann. Geofis. 12, 2205–2214. Kilb, D., Gomberg, J., Bodin, P., 2002. Aftershock triggering by complete Coulomb stress changes. J. Geophys. Res. 107. doi:10.1029/2001JB000202. King, G.C.P., Cocco, M., 2001. Fault interaction by elastic stress changes: new clues from earthquake sequences. Adv. Geophys. 44, 1–39. Marsan, D., 2003. Triggering of seismicity at short time scales following California earthquakes. J. Geophys. Res. 108, 2266. doi:10.1029/2002JB001946. Mendoza, C., Hartzell, S.H., 1988. Aftershock patterns and main shock faulting. Bull. Seismol. Soc. Am. 78, 1438–1449. Ogata, Y., 1983. Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. J. Phys. Earth 31, 115–124. Ogata, Y., 1988. Statistical models for earthquake occurrence and residual analysis for point process. J. Am. Stat. Assoc. 83, 9–27. Ogata, Y., 1998. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50, 379–402. Ruina, A., 1983. Slip instability and state variable friction laws. J. Geo>phys. Res. 88 (B12), 10359–10370. Shi, Y., Bolt, A., 1982. The standard error of the magnitude-frequency b value. Bull. Seismol. Soc. Am. 72, 1677–1687. Stein, R.S., Barka, A.A., Dieterich, J.H., 1997. Progressive failure on the North Anatolian Fault since 1939 by earthquake stress triggering. Geophys. J. Int. 128, 594–604. Stein, R.S., 1999. The role of stress transfer in earthquake occurrence. Nature 402, 605–609. Toda, S., Stein, R.S., Reasemberg, P.A., Dieterich, H., Yoshida, A., 1998. Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J. Geophys. Res. 103, 24543–24565. Toda, S., Stein, R.S., Sagiya, T., 2002. Evidence from the AD 2000 Izu Islands earthquake swarm that stressing rate governs seismicity. Nature 419 (6902), 58–61 (Sep 5). Toda, S., Stein, R.S., 2003. Toggling of seismicity by the 1997 Kagoshima earthquake couplet: a demonstration of time-dependent stress transfer. J. Geophys. Res. 108, 2567. doi:10.1029/ 2003JB002365. Udìas, A., 1999. Principles of Seismology. Cambridge University Press. Vere-Jones, D., 1969. A note on the statistical interpretation of Bath's Law. Bull. Seismol. Soc. Am. 59, 1535–1541. Zhuang, J., Ogata, Y., Vere-Jones, D., 2004. Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res. 109, B05031. doi:10.1029/ 2003JB002879. Ziv, A., 2003. Foreshocks, aftershocks, and remote triggering in quasistatic models. J. Geophys. Res. 108 (B10), 2498. doi:10.1029/ 2002JB002318. Ziv, A., Rubin, M., 2003. Implication of rate-and-state friction for properties of aftershock sequence: quasi-static inherently discrete simulations. J. Geophys. Res. 108 (B1), 2051. doi:10.1029/ 2001JB001219.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorConsole, R.en
dc.contributor.authorMurru, M.en
dc.contributor.authorCatalli, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1272.pdf397.95 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

36
checked on Feb 10, 2021

Page view(s) 50

171
checked on Apr 13, 2024

Download(s)

42
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric