Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2465
DC FieldValueLanguage
dc.contributor.authorallPapadimitriou, E. E.; Geophysics Department, University of Thessaloniki, Thessaloniki, Greeceen
dc.contributor.authorallEvison, F. F.; Institute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.en
dc.contributor.authorallRhoades, D. A.; Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand.en
dc.contributor.authorallKarakostas, V. G.; Geophysics Department, University of Thessaloniki, Thessaloniki, Greeceen
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-09-14T07:29:11Zen
dc.date.available2007-09-14T07:29:11Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2465en
dc.description.abstractRecent strong (M 6.6) earthquakes in Greece are examined from the point of view of two current, but disparate, approaches to long-term seismogenesis. These are the evolving stress field (ESF) approach, in which earthquakes are considered to be triggered by accumulated stress changes from past earthquakes and tectonic loading on the major faults, and the precursory scale increase (Y) approach, in which a major earthquake is preceded in the long term by an increase in minor earthquake occurrences, with the magnitude of the precursory earthquakes, and the precursor time and area all scaling with the major earthquake magnitude. The strong earthquakes are found to be consistent with both approaches, and it is inferred that both approaches have a relevant role to play in the description of the long-term generation process of major earthquakes. A three-stage faulting model proposed previously to explain the Y phenomenon involves a major crack, which eventually fractures in the major earthquake, being formed before the onset of precursory seismicity. Hence we examine whether ESF can account for the formation of the major crack by examining the accumulated stress changes at the time of the onset of Y for each strong earthquake. In each case, the answer is in the affirmative; there is enhanced stress in the vicinity of the main shock at the time of the onset. The same is true for most, but not all, of the locations of precursory earthquakes.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/111 (2006)en
dc.subjectseismogenesisen
dc.subjectGreece:en
dc.titleLong-term seismogenesis in Greece: Comparison of the evolving stress field and precursory scale increase approachesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB05318en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2005JB003805en
dc.relation.referencesBowman, D. D., and G. C. P. King (2001), Accelerating seismicity and stress accumulation before large earthquakes, Geophys. Res. Lett., 21, 4039–4042. Bowman, D. D., G. Ouillon, C. G. Sammis, A. Sornette, and D. Sornette (1998), An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24,359– 24,372. Bufe, C. G., and D. J. Varnes (1993), Predictive modeling of the seismic cycle of the greater San Francisco bay region, J. Geophys. Res., 98, 9871–9883. Deng, J., and L. R. Sykes (1997), Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective, J. Geophys. Res., 102, 9859–9886. Erikson, L. (1986), User’s manual for DIS3D: A three-dimensional dislocation program with applications to faulting in the Earth, Masters thesis, 167 pp., Stanford Univ., Stanford, Calif. Evison, F. F. (1977), The precursory earthquake swarm, Phys. Earth Planet. Inter., 15, 19–23. Evison, F. F., and D. A. Rhoades (1998), Long-term seismogenic process for major earthquakes in subduction zones, Phys. Earth Planet. Inter., 108, 185–199. Evison, F. F., and D. A. Rhoades (2001), Model of long-term seismogenesis, Ann. Geofis., 44, 81–93. Evison, F. F., and D. A. Rhoades (2002), Precursory scale increase and long-term seismogenesis in California and northern Mexico, Ann. Geophys., 45, 479– 495. Evison, F. F., and D. A. Rhoades (2004a), Demarcation and scaling of longterm seismogenesis, Pure Appl. Geophys., 161, 21– 45. Evison, F. F., and D. A. Rhoades (2004b), Long-term seismogenesis and self-organized criticality, Earth Planets Space, 56, 749– 760. Evison, F. F., and D. A. Rhoades (2005), Multiple-mainshock events and long-term seismogenesis in Italy and New Zealand, N. Z. J. Geol. Geophys., 48, 523– 536. Gilbert, L. E., J. Beavan, and C. H. Scholz (1993), Analysis of a 100 year geodetic record from northern California, in Contributions of Space Geodesy to Geodynamics: Crustal Deformation, Geodyn. Ser., vol. 23, edited by D. E. Smith and D. L. Turcotte, pp. 215– 232, AGU, Washington, D. C. Harris, R. A., and R. W. Simpson (1993), In the shadow of 1857: An evaluation of the static stress changes generated by the M8 Ft. Tejon, California, earthquake, Eos Trans. AGU, 74(43), Fall Meet. Suppl., 427. Harris, R. A., and R. W. Simpson (1996), In the shadow of 1857: The effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California, Geophys. Res. Lett., 23, 229– 232. Jaume´, S. C., and L. R. Sykes (1999), Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys., 155, 279– 305. King, G. C. P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys., 44, 1– 38. King, G. C. P., R. S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935– 953. Nalbant, S. S., A. Hubert, and G. C. P. King (1998), Stress coupling between earthquakes in northwestern Turkey and the north Aegean Sea, J. Geophys. Res., 103, 24,469– 24,486. Nur, A., and G. Mavko (1974), Postseismic viscoelastic rebound, Science, 183, 204– 206. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040. Page, E. S. (1954), Continuous inspection schemes, Biometrika, 41, 100– 114. Papadimitriou, E. E. (2002), Mode of strong earthquake recurrence in central Ionian Islands (Greece): Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks, Bull. Seismol. Soc. Am., 92, 3293– 3308. Papadimitriou, E. E., and L. R. Sykes (2001), Evolution of the stress field in the northern Aegean Sea (Greece), Geophys. J. Int., 146, 747– 759. Papazachos, B. C., and P. E. Comninakis (1971), Geophysical and tectonic features of the Aegean Arc, J. Geophys. Res., 76, 8517– 8533. Papazachos, B. C., D. M. Mountrakis, C. B. Papazachos, M. D. Tranos, G. F. Karakaisis, and A. S. Savvaidis (2001), The faults that caused the known strong earthquakes in Greece and surrounding areas during 5th century B. C. up to present, paper presented at 2nd Conference on Earthquake Engineering and Engineering Seismology, Tech. Chamber of Greece, Thessaloniki, Greece, 2 –30 Sept. Papazachos, B. C., E. M. Scordilis, D. G. Panagiotopoulos, C. B. Papazachos, and G. F. Karakaisis (2004), Global relations between seismic fault parameters and moment magnitude of earthquakes, paper presented at 10th Congress of Hellenic Geological Society, Thessaloniki, Greece, 14 – 17 April. Papazachos, B. C., P. E. Comninakis, G. F. Karakaisis, V. G. Karakostas, Ch. A. Papaioannou, C. B. Papazachos, and E. M. Scordilis (2005), A Catalogue of Earthquakes in Greece and Surrounding Area for the Period 550BC– 1999, 333 pp., Geophys. Lab., Univ. of Thessaloniki, Thessaloniki, Greece. Rhoades, D. A., and F. F. Evison (2004), Long-range earthquake forecasting with every earthquake a precursor according to scale, Pure Appl. Geophys., 161, 47–72. Rhoades, D. A., and F. F. Evison (2005), Test of the EEPAS forecasting model on the Japan earthquake catalogue, Pure Appl. Geophys., 162, 1271– 1290. Savage, J. C., and W. H. Prescott (1978), Asthenosphere readjustment and the earthquake cycle, J. Geophys. Res., 83, 3369– 3376. Scholz, C. (1990), The Mechanics of Earthquakes and Faulting, 439 pp., Cambridge Univ. Press, New York. Steketee, J. A. (1958), On Voltera’s dislocations in a semi–infinite elastic medium, Can. J. Phys., 36, 192– 205. Thatcher, W. (1983), Nonlinear strain buildup and the earthquake cycle on the San Andreas fault, J. Geophys. Res., 88, 5893– 5902. Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974– 1002. Wessel, P., and W. H. F. Smith (1998), New improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579.en
dc.description.fulltextreserveden
dc.contributor.authorPapadimitriou, E. E.en
dc.contributor.authorEvison, F. F.en
dc.contributor.authorRhoades, D. A.en
dc.contributor.authorKarakostas, V. G.en
dc.contributor.authorConsole, R.en
dc.contributor.authorMurru, M.en
dc.contributor.departmentGeophysics Department, University of Thessaloniki, Thessaloniki, Greeceen
dc.contributor.departmentInstitute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.en
dc.contributor.departmentInstitute of Geological and Nuclear Sciences, Lower Hutt, New Zealand.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGeophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece-
crisitem.author.deptInstitute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.-
crisitem.author.deptInstitute of Geological and Nuclear Sciences, Lower Hutt, New Zealand-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-3574-2787-
crisitem.author.orcid0000-0002-9999-6770-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1270.pdf4.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

7
checked on Feb 10, 2021

Page view(s) 50

175
checked on Apr 20, 2024

Download(s)

29
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric