Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2451
DC FieldValueLanguage
dc.contributor.authorallStrada, E.; Dipartimento di Scienze della Terra, Universita` di Siena, Siena, Italy.en
dc.contributor.authorallTalarico, F.; Dipartimento di Scienze della Terra, Universita` di Siena, Siena, Italy.en
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2007-09-05T11:36:56Zen
dc.date.available2007-09-05T11:36:56Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2451en
dc.description.abstractThe silicate parageneses of variably retrogressed eclogites are extensively used by metamorphic petrologists to reconstruct the tectonometamorphic evolution of ophiolitesbearing units and high-pressure continental tectonic slices in orogenic belts from initial burial to exhumation. On the other hand, the opaque mineralogy of these rocks is generally not studied in detail although the characterization of Fe-Ti oxides and sulphides in metabasites has a great potential [Clark, 1997; Dunlop and O¨ zdemir, 1997; Frost, 1991b] to better understand the processes controlling the formation and stability of magnetic minerals (mainly magnetite and pyrrhotite) in subduction zones and collisional orogens and to improve geological interpretation of magnetic survey data. [3] The Hercynian basement of northern Sardinia provides a case study to define the relationships between metamorphic evolution and magnetic properties of eclogite and amphibolite facies metabasites in a number of structurally and petrologically well-studied outcrops within a representative crustal section of the southern European Variscan belt. [4] To characterize the magnetic properties of these rocks, we conducted a series of minero-petrographical analyses and mineral magnetic measurements on a suite of samples representative of all the main mafic/ultramafic lenses of the region. In this study, we report on new data and interpretations which are essential (1) to characterize and to verify primary and secondary oxide contributions to the overall magnetization, (2) to link the stability/instability of magnetic assemblages to specific metamorphic stages, and (3) to provide a preliminary regional-scale perspective on the level of magnetization in all the main metamorphic mafic rock units of the Hercynian orogenic belt in northern Sardinia.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJ. Geophys. Res.en
dc.relation.ispartofseries/111 (2006)en
dc.subjectMagneticen
dc.subjectSardiniaen
dc.titleMagnetic petrology of variably retrogressed eclogites and amphibolites: A case study from the Hercynian basement of northern Sardinia (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12S26en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.identifier.doi10.1029/2006JB004574en
dc.relation.referencesAnderson, R. N., D. A. Clargue, K. D. Klitgord, M. Marshall, and R. K. Hishimori (1975), Magnetic and petrologic variations along the Galapagos Spreading Center and their relation to the Galapagos Melting Anomaly, Geol. Soc. Am. Bull., 86, 683–694. Arthaud, F., and P. Matte (1977), De´termination de la position initiale de la Corse et de la Sardaigne a` la fin de l’orogenese` hercynienne grace aux marqueurs ge´ologiques ante´me´sozoiques, Bull. Soc. Geol. Fr., 19(4), 833–840. Barton, P. B. (1970), Sulfide petrology, in Sulfide Minerals, Rev. Mineral., vol. 1, edited by P. H. Ribbe, 11 pp. Mineral. Soc. of Am., Washington, D. C. Brown, E. H. (1977), The crossite content of Ca-amphibole as a guide to pressure of metamorphism, J. Petrol., 18, 53– 72. Brown, J. L., D. J. Ellis, R. Arculus, and A. Christy (2005), Sulfide metamorphism in blueschist and eclogite, north-eastern New Caledonia, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract V13E-0586. Buddington, A. W., and D. H. Lindsley (1964), Iron-titanium oxide thermometry oxide minerals and synthetic equivalents, J. Petrol., 5, 310–357. Cappelli, B., L. Carmignani, F. Castorina, A. Di Pisa, G. Oggiano, and R. Petrini (1992), A Hercynian suture zone in Sardinia: Geological and geochemical evidence, Geodin. Acta, 5, 1–2, 101– 118. Carmignani, L., and P. Rossi (1999), Carta geologica e strutturale della Sardegna e della Corsica, scale 1:500,000, Ist. Poligr. e Zecca dello Stato S.p.A., Rome. Carmignani, L., B. Cappelli, S. Barca, A. Di Pisa, G. Oggiano, and P. C. Pertusati (1992), A tentative geodynamic model of for the Hercynian basement of northern Sardinia, in Contribution to the Geology of Italy, IGCP 276, Newsl. 5, edited by L. Carmignani and F. P. Sassi, pp. 61– 83, Int. Geol. Correl. Programme, Siena, Italy. Carmignani, L., R. Carosi, A. Di Pisa, M. Gattiglio, G. Musumeci, G. Oggiano, and P. C. Pertusati (1994), The Hercynian chain in Sardinia (Italy), Geodin. Acta, 7, 31–47. Carosi, R., and R. Palmeri (2002), Orogen-parallel tectonic transport in the Variscan belt of northeastern Sardinia (Italy): Implications for the exhumation of medium-pressure metamorphic rocks, Geol. Mag., 139(5), 497–511, doi:10.1017/S0016756802006763. Cassano, E., A. Marcello, R. Nannini, S. Pretti, G. Ranieri, R. Salvadori, and I. Salvadori (1979), Rilievo aeromagnetico della Sardegna e del mare circostante, Ente Miner. Sardo, 3–4, 7– 30. Castorina, F., G. Cesaraccio, A. Di Pisa, and G. Oggiano (1996), The amphibolitic stratified complex of Punta Scorno (Asinara Island, Sardinia, Italy): Petrogenesis and tectonic interpretation, Plinius, 16, 74– 76. Clark, D. A. (1997), Magnetic petrophysics and magnetic petrology: Aids to geological interpretation of magnetic surveys, J. Aust. Geol. Geophys., 17(2), 83– 103. Cortesogno, L., L. Gaggero, G. Oggiano, and J. L. Paquette (2004), Different tectono-thermal evolutionary paths in eclogitic rocks from the axial zone of the Variscan chain in Sardinia (Italy) compared with the Ligurian Alps, Ofioliti, 29, 125– 144. Cruciani, G., M. Franceschelli, and S. Jungs (2003), Zircon morphology and Pb-Pb dating of amphibolite bearing migmatite from the Variscan chain of NE Sardinia, Italy, paper presented at FIST Geoitalia 2003, Assoc. Ital. di Geol. Appl. e Ambientale, Bellaria, Italy. Day, R., M. D. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetite: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260–267. De Boer, J., and F. G. Snider (1979), Magnetic and chemical variations of Mesozoic diabase dikes from eastern North America: Evidence for a hotspot in the Carolinas?, Geol. Soc. Am. Bull., 90, 185– 198. Di Vincenzo, G., F. M. Elter, C. Ghezzo, R. Palmeri, and C. A. Ricci (1994), Petrological evolution of the Palaeozoic basement of Sardinia, in Petrology, Geology and Ore Deposits of the Palaeozoic Basement of Sardinia, Guide-Book to the Field Excursion B3, edited by L. Carmignani et al., pp. 21– 36, Int. Mineral. Assoc., Pisa, Italy. Dunlop, D. J., and O¨ . O¨ zdemir (1997), Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York. Elter, F. M., M. Franceschelli, C. Ghezzo, I. Memmi, and C. A. Ricci (1986), The geology of northern Sardinia, in Guide Book to the Excursion on the Paleozoic Basement of Sardinia, IGCP Project 5 Newsletter, special issue, edited by L. Carmignani et al., pp. 87– 102, casa ed. Pasini, Pisa, Italy. Ferrara, G., C. A. Ricci, and F. Rita (1978), Isotopic ages and tectonometamorphic history of the metamorphic basement of north-eastern Sardinia, Contrib. Mineral. Petrol., 68, 1 –18. Franceschelli, M., I. Memmi, and C. A. Ricci (1982), Ca distribution between almandine -rich garnet and plagioclase in pelitic and psammitc schists from the metamorphic basement of north-eastern Sardinia, Contrib. Mineral. Petrol., 80, 285– 295. Franceschelli, M., I. Turbanti Memmi, A. Eltrudis, R. Palmeri, and G. Carcangiu (1998), Multi-stage metamorphic re-equilibration in eclogitic rocks from the Hercynian basement of NE Sardinia (Italy), Mineral. Petrol., 62, 3–4. Franceschelli, M., G. Carcangiu, A. M. Caredda, G. Cruciani, I. Memmi, and M. Zucca (2002), Transformation of cumulate mafic rocks to granulite and re-equilibration in amphibolite and greenschist facies in NE Sardinia, Italy, Lithos, 63, 1– 18. Frost, B. R. (1991a), Magnetic petrology: Factors that control the occurrence of magnetite in crustal rocks, in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral., vol. 25, edited by D. H. Lindsley, pp. 489– 506, Mineral. Soc. of Am., Washington, D. C. Frost, B. R. (1991b), Stability of oxide minerals in metamorphic rocks, in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral., vol. 25, edited by D. H. Lindsley, pp. 469– 488, Mineral. Soc. of Am., Washington, D. C. Frost, B. R., and D. H. Lindsley (1991), Occurrence of Iron-Titanium oxides in igneous rocks, in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral., vol. 25, edited by D. H. Lindsley, pp. 433– 468, Mineral. Soc. of Am., Washington, D. C. Gattacceca, J., J.-B. Orsini, J.-P. Bellot, B. Henry, P. Rochette, P. Rossi, and G. Cherchi (2004), Magnetic fabric of granitoids from southern Corsica and northern Sardinia and implications for Late Hercynian tectonic setting, J. Geol. Soc. London, 161, 277–289. Ghezzo, C., I. Memmi, and C. A. Ricci (1979), Un evento granulitico nel basamento ercinico della Sardegna nord orientale, Mem. Soc. Geol. Ital., 20, 23– 38. Giacomini, F., R. M. Bomparola, and C. Ghezzo (2005), Petrology and geochronology of metabsites with eclogite facies relics from NE Sardinia: Constraints for the Paleozoic evolution of southern Europe, Lithos, 82, 221– 248. Harlov, D., P. Tropper, W. Seifert, T. Nijland, and H. J. Forster (2005), The role of fH2O and fO2 on the formation of Al-rich Titanite rimes on Ilmenite in amphibolite facies metamorphic rocks: Constraints from equilibria among clinopyroxene-amphibole-magnetite-ilmenitequartz involving CaTiSiO4 and CaAlSiO4OH, Geophys. Res. Abstr., 7, 03960. Helbing, H. (2003), No suture in the Sardinian Variscides: A structural, petrological, and geochronological analysis, Ph.D. thesis, 190 pp., Tu¨binger Geowiss. Arb., Tu¨bingen, Germany. Holland, T. J. B., and S. W. Richardson (1979), Amphibole zonation in metabasites as a guide to the evolution of metamorphic conditions, Contrib. Mineral. Petrol., 70, 143– 148. Kretz, R. (1983), Symbols for rock forming minerals, Am. Mineral., 68, 277– 279. Leake, B. E., et al. (1997), Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names, Can. Mineral., 35, 219– 246. Lecoanet, H., F. Leveque, and S. Segura (1999), Magnetic susceptibility in environmental applications: Comparison of field probes, Phys. Earth Planet. Inter., 115, 191– 204. McEnroe, S. A., P. Robinson, and P. T. Panish (2001), Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmeniteand magnetite-rich cumulate rocks from the Sokndal Region, South Rogaland, Norway, Am. Mineral., 86, 1447– 1468. Menot, R. P., and J. B. Orsini (1990), Evolution du socle ante-stephanien de Corse: Evenements magmatiques et metamorphiques, Schweiz. Mineral. Petrogr. Mitt., 70, 35– 53. Miller, L., F. P. Sassi, and G. Armari (1976), On the occurrence of altered eclogite rocks in north-eastern Sardinia and their implications, Neues Jahrb. Geol. Paleontol., 11, 683–689. Nakamura, D., M. Svojtka, K. Naemura, and T. Hirajima (2004), Very high pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nove´ Dvory, Czech Republic), J. Metamorph. Geol., 22, 593– 603. Papike, J. J., K. C. Cameron, and K. Baldwin (1974), Amphiboles and pyroxenes: Characterisation of other than quadrilateral components and estimation of ferric iron from microprobe data, Geol. Soc. Am. Abstr. Programs, 6, 1053– 1054. Raase, P. (1974), Al and Ti contents in hornblende, indicators of pressure and temperature of regional metamorphism, Contrib. Mineral. Petrol., 45, 231–236. Ricci, C. A. (1992), From crustal thickening to exhumation: Petrological, structural and geochronological records in the crystalline basement of northern Sardinia, in Contribution to the Geology of Italy, IGCP 276, Newsl. 5, edited by L. Carmignani and F. P. Sassi, pp. 187–197, Int. Geol. Correl. Programme, Siena, Italy. Roberts, A. P., Y. Cui, and K. L. Verosub (1995), Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res., 100, 17,909–17,924. Schlinger, C. M., and D. R. Veblen (1989), Magnetism and transmission electron microscopy of Fe-Ti oxides and pyroxenex in a granulite from Lofoten, Norway, J. Geophys. Res., 94, 14,009–14,026. Schwarz, E. J., and D. J. Vaughan (1972), Magnetic phase relations of pyrrhotite, J. Geomagn. Geoelectr., 24, 441– 458. Skilbrei, J. R., T. Skyseth, and O. Olesen (1991), Petrophysical data and opaque mineralogy of high-grade and retrogressed lithologies: Implications for the interpretation of aeromagnetic anomalies in northern Vestranden, central Norway, Tectonophysics, 192, 21– 31. Spear, F. S. (1980), NaSi-CaAl exchange equilibrium between plagioclase and amphibole: An empirical model, Contrib. Mineral. Petrol., 80, 140– 146. Speranza, F., I. M. Villa, L. Sagnotti, F. Florindo, D. Cosentino, P. Cipollari, and M. Mattei (2002), Age of the Corsica-Sardinia rotation and Liguro- Provenc¸al Basin spreading: New palaeomagnetic and Ar/Ar evidence, Tectonophysics, 347, 231– 251. Stampfli, G. M., J. von Raumer, and G. D. Borel (2002), Palaeozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision, Spec. Pap. Geol. Soc. Am., 364, 263– 280. Triboulet, C. (1992), The (Na-Ca) amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 1. An empirical calibration, J. Metamorph. Geol., 10, 545– 556. Verrier, V., and P. Rochette (2002), Estimating peak currents at ground lightning impacts using remanent magnetization, Geophys. Res. Lett., 29(18), 1867, doi:10.1029/2002GL015207. Wasilewski, P., and R. D. Warner (1988), Magnetic petrology of deep crustal rocks- Ivrea zone, Italy, Earth Planet. Sci. Lett., 87, 347– 361. Zenk, M., and B. Schulz (2004), Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland, Mineral. Mag., 68(5), 769– 786.en
dc.description.fulltextreserveden
dc.contributor.authorStrada, E.en
dc.contributor.authorTalarico, F.en
dc.contributor.authorFlorindo, F.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Siena, Siena, Italy.en
dc.contributor.departmentDipartimento di Scienze della Terra, Universita` di Siena, Siena, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversità di Siena, Siena, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.orcid0000-0002-7254-4301-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1151.pdf1.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

8
checked on Feb 10, 2021

Page view(s) 50

238
checked on Apr 17, 2024

Download(s)

34
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric