Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2432
DC FieldValueLanguage
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRhoades, D. A.; Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealanden
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallEvison, F. F.; Institute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.en
dc.contributor.authorallPapadimitriou, E. E.; Geophysics Department, University of Thessaloniki, Thessaloniki, Greece.en
dc.contributor.authorallKarakosta, V. G.; Geophysics Department, University of Thessaloniki, Thessaloniki, Greece.en
dc.date.accessioned2007-09-03T09:38:59Zen
dc.date.available2007-09-03T09:38:59Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2432en
dc.description.abstractTime-invariant, long-range, and short-range forecasting models were fitted to the earthquake catalogue of Greece for magnitudes 4.0 and greater to optimize their ability to forecast events of magnitude 6.0 and greater in the period 1966–1980. The models considered were stationary spatially uniform and spatially varying Poisson models, a long-range forecasting model based on the precursory scale increase phenomenon with every earthquake regarded as a precursor according to scale, and epidemic type short-range forecasting models with spatially uniform and spatially varying spontaneous seismicity. Each of the models was then applied to the catalogue for 1981–2002, and their forecasting performance was compared using the log likelihood statistic. The long-range forecasting model performed substantially better than the time-invariant models, and the short-range forecasting models performed substantially better again. The results show that the information value to be gained from modeling temporal and spatial variation of earthquake occurrence rate, at both long and short range, is much greater than can be gained from modeling spatial variation alone.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofGeophys. Res. Lett.en
dc.relation.ispartofseries/111 (2006)en
dc.subjectearthquake catalogueen
dc.subjectGreeceen
dc.titleComparative performance of time-invariant, long-range and short-range forecasting models on the earthquake catalogue of Greeceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB09304en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.02. Seismological dataen
dc.identifier.doi10.1029/2005JB004113en
dc.relation.referencesAki, K. (1965), Maximum likelihood estimate of b in the formula log N = a bM and its confidence limits, Bull. Earthquake Res. Inst. Univ. Tokyo, 43, 237–238. Aki, K. (1981), A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, Maurice Ewing Ser., vol. 4, edited by D. W. Simpson and P. G. Richards, pp. 566 – 574, AGU, Washington, D. C. Aki, K. (1989), Ideal probabilistic earthquake prediction, Tectonophysics, 169, 197–198. Chen, C.-C., J. B. Rundle, H. C. Li, J. R. Holliday, K. Z. Nanjo, D. L. Turcotte, and K. F. Tiampo (2006), From tornadoes to earthquakes: Forecast verification for binary events applied to the 1999 Chi-Chi, Taiwan, earthquake, TAO, in press. Console, R. (2001), Testing earthquake forecast hypothesis, Tectonophysics, 338, 261– 268. Console, R., and A. M. Lombardi (2002), Computer algorithms for testing earthquake forecasting hypotheses, INGV Tech. Rep. 13, Istituto Nazionale di Geofisica e Vulcanologia, Rome. Console, R., and M. Murru (2001), A simple and testable model for earthquake clustering, J. Geophys. Res., 106, 8699– 8711. Console, R., M. Murru, and A. M. Lombardi (2003), Refining earthquake clustering models, J. Geophys. Res., 108(B10), 2468, doi:10.1029/ 2002JB002130. Console, R., M. Murru, and F. Catalli (2006), Physical and stochastic models of earthquake clustering, Tectonophysics, 417, 141– 153. Evison, F. F., and D. A. Rhoades (1997), The precursory earthquake swarm in New Zealand: Hypothesis test II, N. Z. J. Geol. Geophys., 40, 537– 547. Evison, F. F., and D. A. Rhoades (2001), Model of long-term seismogenesis, Ann. Geofis., 44, 81– 93. Evison, F. F., and D. A. Rhoades (2004), Demarcation and scaling of longterm seismogenesis, Pure Appl. Geophys., 161, 21–45. Frankel, A. (1995), Mapping seismic hazard in the central and eastern United States, Seismol. Res. Lett., 66, 8– 21. Helmstetter, A., and D. Sornette (2002), Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107(B10), 2237, doi:10.1029/2001JB001580. Helmstetter, A., and D. Sornette (2003), Importance of direct and indirect triggered seismicity in the ETAS model of seismicity, Geophys. Res. Lett., 30(11), 1576, doi:10.1029/2003GL017670. Helmstetter, A., G. Ouillon, and D. Sornette (2003), Are aftershocks of large Californian earthquakes diffusing?, J. Geophys. Res., 108(B10), 2483, doi:10.1029/2003JB002503. Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006), Comparison of short-term and time-independent earthquake forecast models for southern California, Bull. Seismol. Soc. Am., 96, 90– 106. Holliday, J. R., K. Z. Nanjo, K. F. Tiampo, J. B. Rundle, and D. L. Turcotte (2005), Earthquake forecasting and its verification, Nonlinear Processes Geophys., 12, 965–977. Jackson, D. D., and Y. Y. Kagan (1999), Testable earthquake forecasts for 1999, Seismol. Res. Lett., 70, 393– 403. Kagan, Y. Y. (2002), Aftershock xone scaling, Bull. Seismol. Soc. Am., 92, 641– 655, doi:10.1785/0120010172. Kagan, Y. Y., and D. D. Jackson (2000), Probabilistic forecasting of earthquakes, Geophys. J. Int., 143, 438– 453. Keilis-Borok, V. I. (1990), The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction, Rev. Geophys., 28, 19– 34. Keilis-Borok, V. I. (1996), Intermediate-term earthquake prediction, Proc. Natl. Acad. Sci. U.S.A., 93, 3748– 3755. Keilis-Borok, V. I., and V. G. Kossobokov (1987), Periods of high probability of occurrence of the world’s strongest earthquakes, Comput. Seismol., 19, 45–53. McKenzie, D. P. (1978), Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions, Geophys. J. R. Astron. Soc., 55, 217– 254. Molchan, G. M. (1997), Earthquake prediction as a decision-making problem, Pure Appl. Geophys., 149, 233– 247. Ogata, Y. (1989), Statistical models for standard seismicity and detection of anomalies by residual analysis, Tectonophysics, 169, 159– 174. Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Stat. Math., 50, 2, 379–402. Papadimitriou, E. E., F. F. Evison, D. A. Rhoades, V. G. Karakostas, R. Console, and M. R. Murru (2006), Long-term seismogenesis in Greece: Comparison of the evolving stress field and precursory scale increase approaches, J. Geophys. Res., 111, B05318, doi:10.1029/2005JB003805. Papazachos, B. C., and P. E. Comninakis (1970), Geophysical features of the Greek island arc and eastern Mediterranean ridge, C. R. Seances Conf. Reunie Madrid, 1969, 16, 74– 75. Papazachos, B. C., P. E. Comninakis, G. F. Karakaisis, B. G. Karakostas, C. A. Papaioannou, C. B. Papazachos, and E. M. Scordilis (2005), A catalogue of earthquakes in Greece and surrounding area for the period 550BC– 2005, Geophys. Dep., Thessaloniki Univ., Thessaloniki, Greece. Papazachos, C. B., and A. A. Kiratzi (1996), A detailed study of the active crustal deformation in the Aegean and surrounding area, Tectonophysics, 253, 129– 153. Reasenberg, P. A., and L. M. Jones (1989), Earthquake hazard after a main shock in California, Science, 243, 1173– 1176. Rhoades, D. A., and F. F. Evison (1979), Long-range earthquake forecasting based on a single predictor, Geophys. J. R. Astron. Soc., 59, 43– 56. Rhoades, D. A., and F. F. Evison (1989), Time-variable factors in earthquake hazard, Tectonophysics, 167, 201–210. Rhoades, D. A., and F. F. Evison (2004), Long-range earthquake forecasting with every earthquake a precursor according to scale, Pure Appl. Geophys., 161, 47– 72. Rhoades, D. A., and F. F. Evison (2005), Test of the EEPAS forecasting model on the Japan earthquake catalogue, Pure Appl. Geophys., 162, 1271–1290. Rhoades, D. A., and F. F. Evison (2006), The EEPAS forecasting model and the probability of moderate-to-large earthquakes in central Japan, Tectonophysics, 417, 119– 130. Scordilis, E. M., G. F. Karakaisis, B. G. Karakostas, D. G. Panagiotopoulos, P. E. Comninakis, and B. C. Papazachos (1985), Evidence for transform faulting in the Ionian Sea: The Cephalonia Island earthquake sequence, Pure Appl. Geophys., 123, 388– 397.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorConsole, R.en
dc.contributor.authorRhoades, D. A.en
dc.contributor.authorMurru, M.en
dc.contributor.authorEvison, F. F.en
dc.contributor.authorPapadimitriou, E. E.en
dc.contributor.authorKarakosta, V. G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentInstitute of Geological and Nuclear Sciences, Lower Hutt, New Zealanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentInstitute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.en
dc.contributor.departmentGeophysics Department, University of Thessaloniki, Thessaloniki, Greece.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstitute of Geological and Nuclear Sciences, Lower Hutt, New Zealand-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptInstitute of Geophysics, School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand.-
crisitem.author.deptGeophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.orcid0000-0003-3574-2787-
crisitem.author.orcid0000-0002-9999-6770-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1263.pdf2.98 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

29
checked on Feb 10, 2021

Page view(s) 50

222
checked on Mar 27, 2024

Download(s)

29
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric