Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2425
DC FieldValueLanguage
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTrovato, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMeredith, P.; Department of Earth Sciences, University College London,en
dc.contributor.authorallBenson, P. M.; Department of Earth Sciences, University College London,en
dc.contributor.authorallTroise, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDe Natale, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-09-03T08:12:06Zen
dc.date.available2007-09-03T08:12:06Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2425en
dc.description.abstractWe report laboratory measurements of P- and S-wave velocities on samples of tuff from Campi Flegrei (Italy), and a new tomographic velocity map of the Campi Flegrei caldera. Laboratory measurements were made in a hydrostatic pressure vessel during both increasing and decreasing effective pressure cycles. Selected samples were also thermally stressed at temperatures up to 600 C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment, and velocities were measured after thermal stressing. Laboratory P- and S-wave velocities are initially low for the tuff, which has an initial porosity of 45%, but both increase by between 25 and 50% over the effective pressure range of 5 to 80MPa, corresponding to a decrease of porosity of 70%. Marked velocity hysteresis, due to inelastic damage processes, is also observed in samples subjected to a pressurization-depressurization cycle. Tomographic seismic velocity distributions obtained from field recordings are in general agreement with the laboratory measurements. Integration of the laboratory ultrasonic and seismic tomography data indicates that the tuffs of the Campi Flegrei caldera can be water or gas saturated, and shows that inelastic pore collapse and cracking produced by mechanical and thermal stress can significantly change the velocity properties of Campi Flegrei tuffs at depth. These changes need to be taken into account in accurately interpreting the crustal structure from tomographic data.en
dc.language.isoEnglishen
dc.publisher.nameBirkhauseren
dc.relation.ispartofPure Appl. Geophys.en
dc.relation.ispartofseries/163 (2006)en
dc.subjectLaboratory P- and S-wave velocitiesen
dc.subjecttomographic velocity mapen
dc.subjectmechanical and thermal stressesen
dc.titleUnderstanding the seismic velocity structure of Campi Flegrei caldera (Italy): from the laboratory to the field scaleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2205-2221en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.identifier.doi10.1007/s00024-006-0118-yen
dc.relation.referencesASTER, R. C. and MEYER, R. P. (1988), Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy, Tectonophysics 149, 195–218. BENSON, P.M., MEREDITH, P.G., PLATZMAN, E.S., and WHITE, R.E. (2005), Pore fabric shape anisotropy in porous sandstone and its relation to elastic and permeability anisotropy under hydrostatic pressure, Int. J. Rock Mech. and Min. Sci. 42, 890–899. BIANCHI, R., CORDINI, A., FEDERICO, C., GIBERTI, G., LANCIANO, P., POZZI, J.P., SARTORIS, G., and SCANDONE, R. (1987), Modeling of surface deformation in volcanic areas: The 1970–1972 and 1982–1984 crises of Campi Flegrei, Italy, J. Geophys. Res. 92, 14139–14150. BONAFEDE, M. and MAZZANTI, M. (1998), Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res. 81, 137–157. BONAFEDE,M., DRAGONI, M., and QUARENI, F. (1986), Displacements and stress fields produced by a centre of dilatation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. R. Astr. Soc. 87, 455–485. DE GENNARO, M., INCORONATO, A., MASTROLORENZO, G., ADABBO, M., and SPINA, G. (1999), Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy), J. Volc. Geoth. Res. 91, 303–320. DE NATALE, G., FERRARO, A., and VIRIEUX, J.A. (1991), A probability method for local earthquake focal mechanisms, Geophys. Res. Lett. 18 (4), 613–616. DE NATALE, G., and PINGUE, F. (1993), Ground deformations in collapsed caldera structures, J. Volcanol. Geotherm. Res. 57, 19–38. DE NATALE, G., PETRAZZUOLI, S.M., and PINGUE, F. (1997), The effect of collapse structures on ground deformations in calderas, Geophys. Res. Lett. 24 (13), 1555–1558. DE NATALE, G., TROISE, C., and PINGUE, F. (2001), A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera, J. Geodynamics 32, 487–517. DE NATALE, G., ZOLLO, A., FERRARO, A., and VIRIEUX, J. (1995), Accurate fault mechanism determinations for a 1984 earthquake swarm at Campi Flegrei caldera (Italy) during an unrest episode: Implications for volcanological research, J. Geophys. Res. 100, 24167–24185. DVORAK, J. J. and BERRINO, D. (1991), Recent ground movement and seismic activity in Campi Flegrei, southern Italy: Episodic growth of a resurgent dome, J. Geophys. Res. 96, 2309–2323. EBERHART-PHILLIPS, D., Local earthquake tomography: earthquake source regions. In Seismic Tomography: Theory and Practice (eds. by Iyer, H. M. and Hirahara, K) (Chapman & Hall, London, 1993). GAETA, F.S., DE NATALE, G., PELUSO, F., MASTROLORENZO, G., CASTAGNOLO, D., TROISE, C., PINGUE, F., MITA, D.G., and ROSSANO, S. (1998), Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of thermal fluid-dynamical processes in the geothermal system, J. Geophys. Res. 103, 921–933. GAETA, F.S., PELUSO, F., ARIENZO, I., CASTAGNOLO, D., DE NATALE, G., MILANO, G., ALBANESE, C., and MITA, D.G. (2003), A physical appraisal of a new aspect of bradyseism: The miniuplifts, J. Geophys. Res. 108, B8, 10.1029/2002JB001913. MAVKO, G. and NUR, A. (1975), Melt squirt in the asthenosphere, J. Geophys. Res. 80, 1444–1448. O’CONNELL, R. and BUDIANSKY, B. (1976), Seismic velocities in dry and saturated cracked solids, J. Geophys. Res. 79, 5413–5426. PRESTI, D., TROISE, C., and DE NATALE, G. (2004), Probabilistic location of seismic sequences in heterogeneous media, Bull. Seismo. Soc. Am. 94 (6), 2239–2253. PUJOL, J. (2000), Comment on Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data by M. Zamora, G. Sartoris, and W. Chelini, J. Geophys. Res. 105 (B9), 21537–21542. ROSI, M. and SBRANA, A. (1987), Phlegraean Fields: Rome. Quaderni de ‘‘La Ricerca Scientifica’’ 9 (114), 175 pp. SCHUBNEL, A. and GUE´ GUEN, Y. (2003), Dispersion and Anisotropy in Cracked Rocks, J. Geophys. Res. 108, 2101, doi:10.1029/2002JB001824. THOMSEN, L. (1985), Biot-consistent elastic moduli of porous rocks: the low frequency limit, Geophysics 50, 2797–2807. 2220 S. Vinciguerra et al. Pure appl. geophys., THURBER, C. H., Local earthquake tomography: velocities and Vp/Vs – theory. In Seismic Tomography: Theory and Practice (eds. Iyer H. M.and Hirahara K) (Chapman&Hall, London, 1993). TROISE, C., DE NATALE, G., PINGUE, F., and ZOLLO, A. (1997), A model for earthquake generation during unrest episodes at Campi Flegrei and Rabaul calderas, Geophys. Res. Lett. 24 (13), 1575–1578. TROISE, C., CASTAGNOLO, F., PELUSO, F., GAETA, F.S., MASTROLORENZO, G., and DE NATALE, G. (2001), A 2D mechanical-thermal fluid-dynamical model for geothermal system at calderas: An application to Campi Flegrei, J. Volcanol. Geotherm. Res. 109, 1–12. TROISE, C., PINGUE, F., and DE NATALE, G. (2003), Coulomb stress changes at calderas: Modeling the seismicity of Campi Flegrei (Southern Italy), J. Geophys. Res. 108, B6, 2292, doi:10.1029/2002JB002006. VANORIO, T., PRASAD, M., PATELLA, D., and NUR, A. (2002), Ultrasonic velocity measurements in volcanic rocks: Correlation with microtexture. Geophys, J. Internat. 149, 22–36. VANORIO, T., VIRIEUX, J., CAPUANO, P., and RUSSO, G. (2005), Three-dimensional seismic tomography from P-wave and S-wave microearthquake travel times and rock physics characterization of the Campi Flegrei caldera, J. Geophys. Res. 110, B03201, doi:10.1029/2004JB003102. VINCIGUERRA, S., TROVATO, C., MEREDITH, P.G., and BENSON, P.M. (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. and Min. Sci. 42, 900–910. ZAMORA,M., SARTORIS, G., and CHELINI,W. (1994), Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data, J. Geophys. Res. 99, B7, 13553–13562. ZAMORA, M., SARTORIS, G., and CHELINI, W. (2001), Reply to comment by Jose Pujol on ‘‘Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data’’, J. Geophys. Res. 106, B2, 2163–2166.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorTrovato, C.en
dc.contributor.authorMeredith, P.en
dc.contributor.authorBenson, P. M.en
dc.contributor.authorTroise, C.en
dc.contributor.authorDe Natale, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, University College London,en
dc.contributor.departmentDepartment of Earth Sciences, University College London,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italy-
crisitem.author.deptDepartment of Earth Sciences, University College London,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-6939-3549-
crisitem.author.orcid0000-0001-6555-5777-
crisitem.author.orcid0000-0001-8391-2846-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
337.pdf517.79 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

26
checked on Feb 10, 2021

Page view(s)

140
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric