Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2423
DC FieldValueLanguage
dc.contributor.authorallRomano, C.; Dipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italyen
dc.contributor.authorallPoe, B. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallKreidie, N.; Dipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italyen
dc.contributor.authorallMcCammon, C. A.; Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germanyen
dc.date.accessioned2007-09-03T07:50:50Zen
dc.date.available2007-09-03T07:50:50Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2423en
dc.description.abstractElectrical conductivities of polycrystalline garnets ranging in chemical composition from almandine (Fe3Al2Si3O12) to pyrope (Mg3Al2Si3O12) were measured at 10 GPa and 19 GPa at temperatures ranging from 300 to 1700 °C using complex impedance spectroscopy in a multianvil device. Mössbauer spectroscopy of each sample was carried out both before and after the electrical measurements to characterize the oxidation state of Fe in the almandine bearing garnets. Similar to the behavior of other ferromagnesian silicates, the substitution of Fe for Mg along this compositional join dramatically increases electrical conductivity, but this compositional effect is reduced with increasing temperature. Conductivities increase with increasing total Fe content, as the average Fe2+-Fe3+ distance decreases. At 10 GPa, activation energies for conductivity vary smoothly with composition and increase rapidly toward the pyrope end-member composition, where it reaches a value of 2.5 eV. The results are consistent with an electrical conductivity mechanism involving small polaron mobility in the Fe-bearing garnets at 10 GPa. At 19 GPa, however, there is virtually no change in the activation energy as a function of Fe-Mg substitution for the pyrope-rich garnets. These higher pressure measurements reß ect a mechanism involving oxygen related point defects, as conductivities increase with pressure at constant T for each garnet, and the effect of pressure is greater for the more Mg-rich garnets. The data also allow for a more quantitative evaluation of the effect of chemical composition, speciÞ cally Fe-Mg substitution, on the electrical conductivity proÞ le of the mantle, using a recently developed laboratory- derived model. We apply the model using these data to a portion of the transition zone between 520 and 660 km, in which we vary the garnet composition from Py100 to Py85Alm15. Although only a minor effect on bulk mantle conductivity results, we conclude that the overall garnet composition may, however, be important in characterizing the magnitude of any EC discontinuity with respect to the above-lying mantle.en
dc.language.isoEnglishen
dc.relation.ispartofAmerican Mineralogisten
dc.relation.ispartofseries/91 (2006)en
dc.subjectElectrical conductivityen
dc.subjectpyrope-almandineen
dc.subjecthigh pressureen
dc.subjectcation substitutionen
dc.titleElectrical conductivities of pyrope-almandine garnets up to 19 GPa and 17008Cen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1371-1377en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.2138/am.2006.1983en
dc.relation.referencesAmthauer, G., Annersten, H., and Hafner, S.S. (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitscrift für Kristallographie, 143, 14 55. Bahr, K. and Duba, A. (2000) Is the asthenosphere electrically anisotropic? Earth and Planetary Science Letters, 178, 87 95. Banks, R.J. (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophysical Journal of the Royal Astronomical Society, 17, 457. Darken, L.S. and Gurry, R.W. (1945) The system iron-oxygen. I. The wüstite Þ eld and related equilibria. Journal of the American Chemical Society, 67, 1398 1412. Duba, A., Boland, J.N., and Ringwood, A.E. (1973) The electrical conductivity of pyroxene. Journal of Geology, 81, 727 735. Duffy, T.S. and Anderson, D.L. (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. Journal of Geophysical Research, 94, 1895 1912. Ganguly, J., Cheng, W., and Chakraborty, S. (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contributions to Mineralogy and Petrology, 131, 171 180. Hinze, E., Will, G., and Cemic, L. (1981) Electrical conductivity measurements on synthetic olivines and on olivine, enstatite, and diopside from Dreiser Weiher, Eifel (Germany) under deÞ ned thermodynamic activities as a function of temperature and pressure. Physics of the Earth and Planetary Interiors, 25, 245 254. Hirsch, L.M. (1991) The Fe-FeO buffer at lower mantle pressures and temperatures. Geophysical Research Letters, 18, 1309 1312. Hirsch, L.M., Shankland, T.J., and Duba, A.G. (1993) Electrical conduction and polaron mobility in Fe-bearing olivine. Geophysical Journal International, 114, 36 44. Ita, J. and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition zone. Journal of Geophysical Research, 97, 6849 6866. Ito, E. and Katsura, T. (1989) A temperature proÞ le in the mantle transition zone. Geophysical Research Letters, 16, 425 428. Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272 273. Katsura, T., Sato, K., and Ito, E. (1998) Electrical conductivity of silicate perovskite at lower-mantle conditions. Nature, 395, 493 495. Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996) Solubility of water in the α, β, and γ phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345 357. Lacam, A. (1983) Pressure and composition dependence of the electrical conductivity of iron-rich synthetic olivines to 200 kbar. Physics and Chemistry of Minerals, 9, 127 132. Li, B.S., Liebermann, R.C., and Weidner, D.J. (2001) P-V-V-p-V-s-T measurements on wadsleyite to 7 GPa and 873 K: Implications for the 410 km seismic discontinuity. Journal of Geophysical Research, 106(B12), 30579 30591. Li, X. and Jeanloz, R. (1990) Laboratory studies of the electrical conductivity of silicate perovskites at high temperatures and pressures. Journal of Geophysical Research, 95, 5067 5078. Lu, R. and Keppler, H. (1997) Water solubility in pyrope to 100 kbar. Contributions to Mineralogy and Petrology, 129, 35 42. McCammon, C.A. (2004) Mössbauer spectroscopy: Applications. In A. Beran and E. Libowitsky, Eds., Spectroscopic Methods in Mineralogy, 6, p. 369 398. Eötvös University Press, Budapest. McCammon, C. (2006) Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure and dynamics. In R.D. van der Hilst, J. Bass, J. Matas, and J. Trampert, Eds., Structure, Composition and Evolution of Earth s Mantle, in press. American Geophysical Union, Washington D.C. Olsen, N. (1999) Long-period (30 days 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophysical Journal International, 138, 179 187. Poe, B.T. and Xu, Y. (1999) In-situ complex impedance spectroscopy of mantle minerals measured at 20 GPa and 1400 °C. Phase Transitions, 68, 453 466. Poe, B.T., Romano, C., Nestola, F., and Rubie, D.C. (2005) Electrical conductivity of hydrous single crystal San Carlos Olivine, Eos Trans. AGU, 86(52), Fall Meeting Supplement, Abstract MR41A-0895. Roberts, J.J. and Tyburczy, J.A. (1991) Frequency-dependent electrical properties of polycrystalline olivine compacts. Journal of Geophysical Research, 96, 16205 16222. (1993) Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Physics and Chemistry of Minerals, 20, 19 26. Schober, M. (1971) The electrical conductivity of some samples of natural olivine at high temperatures and pressures. Zeitschrift für Geophysik, 37, 283 292. Schock, R.N., Duba, A.G., and Shankland, T.J. (1989) Electrical conduction in olivine. Journal of Geophysical Research, 94, 5829 5839. Shankland, T.J., Peyronneau, J., and Poirier, J.-P. (1993) Electrical conductivity of the Earth s lower mantle. Nature, 344, 453 455. Seifert, K.F., Will, G., and Voigt, R. (1982) Electrical conductivity measurements on synthetic pyroxenes MgSiO3-FeSiO3 at high pressures and temperatures under deÞ ned thermodynamic conditions. In W. Schreyer, Ed., High-pressure Researches in Geoscience, p.419 432. Schweizerbart sche, Stuttgart. Wang, D., Xu, Y., and Karato, S. (2005) Effect of water on electrical conductivity in olivine, Eos Trans. AGU, 86(52), Fall Meeting Supplement, Abstract MR41A-0894. Will, G., Cemic, L., Hinze, E., Seifert, K.F., and Voigt, R. (1979) Electrical conductivity measurements on olivines and pyroxenes under deÞ ned thermodynamic activities as a function of temperature and pressure. Physics and Chemistry of Minerals, 4, 189 197. Xu, Y., McCammon, C., and Poe, B.T. (1998a) The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282, 922 924. Xu, Y., Poe, B.T., Shankland, T.J., and Rubie, D.C. (1998b) Electrical conductivity of minerals of the mantle transition zone. Science, 280, 1415 1418. Xu, Y., Shankland, T.J., and Poe, B.T. (2000a) Laboratory-based electrical conductivity in the Earth s mantle. Journal of Geophysical Research, 105, 27865 27875. Xu, Y., Shankland, T.J., and Duba, A.G. (2000b) Pressure effect on electrical conductivity of mantle olivine. Physics of the Earth and Planetary Interiors, 118, 149 161.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRomano, C.en
dc.contributor.authorPoe, B. T.en
dc.contributor.authorKreidie, N.en
dc.contributor.authorMcCammon, C. A.en
dc.contributor.departmentDipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italyen
dc.contributor.departmentBayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.deptDipartimento di Scienze Geologiche, Università degli Studi di Roma Tre, Roma, Italy-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.orcid0000-0003-4765-0775-
crisitem.author.orcid0000-0001-5680-9106-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
318.pdf362.97 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

63
checked on Feb 10, 2021

Page view(s) 1

1,780
checked on Apr 20, 2024

Download(s)

29
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric