Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2403
DC FieldValueLanguage
dc.contributor.authorallSpada, G.; Istituto di Fisica, Universit`a di Urbino ‘Carlo Bo’, Via S. Chiara 27, Urbinoen
dc.contributor.authorallAntonioli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCianetti, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGiunchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-08-31T08:18:00Zen
dc.date.available2007-08-31T08:18:00Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2403en
dc.description.abstractThe response of the Earth to the melting of the Late Pleistocene ice sheets is commonly studied by spherically layered models, based on well-established analytical methods. In parallel, a few models have been recently proposed to circumvent the limitations imposed by spherical symmetry, and to reproduce the actual structure of the lithosphere and of the upper mantle. Their main outcome is that laterally varying rheological structures may significantly affect various geophysical quantities related to glacial isostatic adjustment (GIA), and particularly post-glacial relative sea-level (RSL) variations and 3-D crustal velocities in formerly ice-covered regions. In this paper, we contribute to the ongoing debate about the role of lithospheric and mantle heterogeneities by new 3-D spherical Newtonian finite elements models and we directly compare their outcomes with publicly available global RSL data. This differs from previous investigations, in that have mainly focused on extensive sensitivity analyses or have considered a limited number of RSL observations from formerly glaciated regions and their periphery. In our study the lithospheric thickness mimics the global structure of the cratons based on geological evidence, and the upper mantle includes a low-viscosity zone beneath the oceanic lithosphere.We use two distinct global surface loads, based upon the ICE1 and ICE3G deglaciation chronologies, respectively. Our main finding is that using all of the available RSL observations in the last 6000 years it is not possible to discern between homogeneous and heterogeneous GIA models. This result, which holds for both ICE1 and ICE3G, suggests that the cumulative effects of laterally varying structures on the synthetic RSL curves cancel out globally, yielding signals that do not significantly differ from those based on the 1-D models. We have also considered specific subsets of the global RSL database, sharing similar geographical settings and distances from the main centres of deglaciation. When we consider the data from the margins of the Baltic region, a laterally varying lithospheric thickness improves significantly the agreement with the observations. This is not observed in other relevant situations, including the Hudson bay region. In the regions where the disagreement between predictions and observations is particularly evident, further investigations are needed to improve the geometry of the heterogeneous structures and of the surface ice-sheets distribution.en
dc.language.isoEnglishen
dc.relation.ispartofGeophys. J. Int.en
dc.relation.ispartofseries2/165 (2006)en
dc.subjectglacial rebounden
dc.subjectmantle viscosityen
dc.subjectsea-level variations.en
dc.titleGlacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-D spherical earthen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber692-702en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.identifier.doi10.1111/j.1365-246X.2006.02969.xen
dc.relation.referencesCadek,O.&Fleitout, L., 2003. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography, Geophys. J. Int., 152(3), 566–580. Cianetti, S., Giunchi, C. & Spada, G., 2002. Mantle viscosity beneath the Hudson Bay: An inversion based on the Metropolis algorithm, J. geophys. Res., 107(B12), 2352, doi:10.1029/2001JB000585. Clark, J.A., Farrell,W.E.&Peltier,W.R., 1978. Global changes in postglacial sea level: a numerical calculation, Quat. Res., 9, 265–287. Dal Forno, G., Gasperini, P. & Boschi, E., 2005. Linear or nonlinear rheology in the mantle: a 3D finite-element approach to postglacial rebound modeling, J. Geodyn., 39, 183–195. Farrell, W.E. & Clark, J.A., 1976. On postglacial sea level, Geophys. J. R. astr. Soc., 46, 647–667. Gasperini, P. & Sabadini, R., 1989. Lateral heterogeneities in mantle viscosity and post–lacial rebound, Geophys. J. Int., 98, 413–428. Giunchi, C. & Spada, G., 2000. Postglacial rebound in a non-Newtonian spherical Earth, Geophys. Res. Lett., 27, 2065–2068. Giunchi, C., Spada, G.&Sabadini, R., 1997. Lateral viscosity variations and post-glacial rebound: effects on present-day VLBI baseline deformations, Geophys. Res. Lett., 24, 13–16. Kaufmann, G.&Wolf, D., 1999. Effects of lateral lateral viscosity variations on postglacial rebound: an analytical approach, Geophys. J. Int., 137, 489–500. Kaufmann, G. & Wu, P., 2002. Glacial isostatic adjustment in fennoscandia with a three-dimensional viscosity structure as an inverse problem, Earth planet. Sci. Lett., 197, 1–10. Kaufmann, G., Wu, P. & Wolf, D., 1997. Some effects of lateral heterogeneities in the upper mantle on postglacial land uplift close to continental margins, Geophys. J. Int., 127, 175–187. Kaufmann, G., Wu, P. & Li, G., 2000. Glacial isostatic adjustment in fennoscandia for a laterally heterogeneous earth, Geophys. J. Int., 143, 262–273. Lambeck, K., 1995. Late pleistocene and holocene sea-level chenge in greece and south-western turkey: a separation of eustatic, isostatic and tectonic contributions, Geophys. J. Int., 122, 1022–1044. Latychev, K., Mitrovica, J.X., Tamisiea, M.E., Tromp, J. & Moucha, R., 2005a. Influence of lithospheric thickness variations on 3-D crustal velocities due to glacial isostatic adjustment, Geophys. Res. Lett., 32, L01304, doi:10.1029/2004GL021454. Latychev, K., Mitrovica, J.X., Tromp, J., Tamisiea, M.E., Komatitsch, D. & Christara, C.C., 2005b. Glacial isostatic adjustment on 3-d earth models: a finite-volume formulation, Geophys. J. Int., 161(2), 421–444, doi:10.1111/j.1365-246X.2005.02536.x. Martinec, Z., 1999. Spectral, initial value approach for viscoelastic relaxation of a spherical earth with a three-dimensional viscosity - I. Theory, Geophys. J. Int., 137, 469–488. Mitrovica, J.X.&Milne, G.A., 2002. On the origin of late holocene sea-level highstands within equatorial ocean basins, Quat. Sci. Rev., 21, 2179–2190. Mitrovica, J.X. & Peltier,W.R., 1991. On postglacial geoid subsidence over the equatorial oceans, J. geophys. Res., 96, 20 053–20 071. Mitrovica, J.X. & Peltier,W.R., 1995. Constraints on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region, Geophys. J. Int., 122, 353–377. MSC.Marc 2003. Version 2003, MSC.Software Corporation (NYSE: MNS), Redwood City, California. Nataf, H.C. & Ricard, Y., 1996. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth planet. Int., 95, 101–122. Peltier, W.R. & Andrews, T.S., 1976. Glacial-isostatic adjustment, I, The forward problem, Geophys. J. R. astr. Soc., 46, 605–646. Piana Agostinetti, N., Spada, G. & Cianetti, S., 2004. Mantle viscosity inference: a comparison between simulated annealing and neighbourhood algorithm inversion methods, Geophys. J. Int., 157, 890–900, doi:10.1111/j.136-246X.2004.02237.x. Ronchi, C., Iacono, R. & Paolucci, P.S., 1996. The ‘cubed sphere’: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124(1), 93–114, doi:10.1006/jcph.1996.0047. Sabadini, R., Yuen, D.A. & Portney, M., 1986. The effect of upper mantle lateral heterogeneities on post-lacial rebound, Geophys. Res. Lett., 13, 337–340. Spada, G.&Stocchi, P., 2006. The Sea Level Equation, theory and numerical examples, 96 pp., Aracne Editrice, Roma. Spada, G. et al., 2004. Modeling earth’s post-glacial rebound, EOS, Trans., AGU, 85(6), 62, 64. Stocchi, P., Spada, G. & Cianetti, S., 2005. Isostatic rebound following the alpine deglaciation: impact on the sealevel variations and vertical movements in the Mediterranean region, Geophys. J. Int., 162, doi:10.1111/j.1365-246X.2005.02653.x. Tromp, J. & Mitrovica, J.X., 2000. Surface loading of a viscoelastic planet III. Aspherical models, Geophys. J. Int., 140, 425–441. Tushingham, A.M. & Peltier, W.R., 1991. Ice-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of postglacial sea level change, J. geophys. Res., 96, 4497–4523. Tushingham, A.M.&Peltier,W.R., 1993. Relative Sea Level Database. IGPB PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 93–106, NOAA/NGDC Paleoclimatology Program, Boulder, Colorado. Wahr, J.M. & Davis, J.L., 2002. Geodetic constraints on glacial isostatic adjustment, in Ice sheets, sea level and the dynamic earth, Vol. 29, pp. 3–32, eds Mitrovica, J.X. & Vermeersen, B., AGU Geodynamics Series. Wessel, P.&Smith,W.H.F., 1998. New, improved version of generic mapping tools released, EOS, Trans. Am. geophys. Un., 79(47), 579. Williams, C.A. & Richardson, R.M., 1991. A rheologically layered threedimensional model of San Andreas Fault in central and southern California, J. geophys. Res., 96, 16 597–16 623. Wu, P., 2002a. Mode coupling in a viscoelastic self-gravitating spherical earth induced by axisymmetric loads and lateral viscosity variations, Earth. planet. Sci. Lett., 202, 49–60. Wu, P., 2002b. Effects of nonlinear rheology on degree 2 harmonic deformation in a sperical self-gravitating Earth, Geophys. Res. Lett., 29, doi:10.1029/2001GL014109. Wu, P., 2004. Using commercial finite element packages for the study of the earth deformations, sea levels and the state of stress, Geophys. J. Int., 158, 401–408, doi:10.1111/j.1365-246X.2004.02338.x. Wu, P. & van der Wal, W., 2003. Postglacial sealevels on a spherical, selfgravitating viscoelastic earth: effects of lateral viscosity variations in the upper mantle on the inference of viscosity constrasts in the lower mantle, Earth. planet. Sci. Lett., 211, 57–68. Wu, P.,Wang, H.&Schotman, H., 2005. Postglacial induced surface motions, sea-levels and geoid rates on a spherical self-gravitating laterally heterogeneous earth, J. Geodyn., 39, 127–142, doi:10.1016/j.jog.2004.08.006. Zhong, S., Paulson, A. & Wahr, J., 2003. Three-dimesional finite-element modelling of Earth’s viscoelastic deformation: effects of lateral variations in lithospheric thickness, Geophys. J. Int., 155, 679–695.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSpada, G.en
dc.contributor.authorAntonioli, A.en
dc.contributor.authorCianetti, S.en
dc.contributor.authorGiunchi, C.en
dc.contributor.departmentIstituto di Fisica, Universit`a di Urbino ‘Carlo Bo’, Via S. Chiara 27, Urbinoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInsitute of Physics, University of Urbino, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-7502-5662-
crisitem.author.orcid0000-0002-0690-7274-
crisitem.author.orcid0000-0002-0174-324X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1118.pdf1.52 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 5

38
checked on Feb 10, 2021

Page view(s) 50

566
checked on Mar 27, 2024

Download(s)

26
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric