Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2383
DC FieldValueLanguage
dc.contributor.authorallPareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallFavalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2007-08-27T09:04:17Zen
dc.date.available2007-08-27T09:04:17Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2383en
dc.description.abstractWe have simulated the impact of the tsunami generated by the Late Bronze Age (LBA) volcanic eruption of Santorini on the Eastern Mediterranean. Two different tsunami triggering mechanisms were considered: a caldera collapse and pyroclastic flows/surges entering the sea. Simulations include the ‘‘worst’’ input conditions in order to evaluate the maximum possible impacts, but also ‘‘lighter’’ input conditions, compatible with the lack of any tsunami trace on the Northern coasts of Crete. In all the simulations, tsunami propagation is mainly confined to the Southern Aegean. Outside the Aegean, the tsunami impact was negligible and not responsible for the slide-slumping of fine-grained pelagic and/or hemipelagic sediments considered the sources of the sporadically located seadeposits in the Ionian Sea and of the widespread megaturbidite deposits localized in the Ionian and Sirte Abyssal Plains.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofGeophys. Res. Lett.en
dc.relation.ispartofseries/33 (2006)en
dc.subjectMinoan tsunamien
dc.subjectSantorinien
dc.subjecteastern Mediterraneanen
dc.titleImpact of the Minoan tsunami of Santorini. Simulated scenarios in the Eastern Mediterraneanen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL18607en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2006GL027205en
dc.relation.referencesCita, M. B., and B. Rimoldi (1997), Geological and Geophysical evidence for a Holocene tsunami deposit in the eastern Mediterranean deep-sea record, J. Geodyn., 24, 293– 304. Cita, M. B., A. Camerlenghi, and B. Rimoldi (1996), Deep-sea tsunami deposits in the eastern Mediterranean: New evidence and depositional models, Sediment. Geol., 104, 155– 173. Conley, D. C., and J. G. Griffin Jr. (2004), Direct measurements of bed stress under swash in the field, J. Geophys. Res., 109, C03050, doi:10.1029/2003JC001899. Dawson, G. D., and S. Shi (2000), Tsunami deposits, Pure Appl. Geophys., 157, 875–897. Dominey-Howes, D. (2004), A re-analysis of the Late Bronze Age eruption and tsunami of Santorini, Greece, and the implications for the volcanotsunami hazard, J. Volcanol. Geotherm. Res., 130, 107– 132. Friedrich, W. L., et al. (2006), Santorini eruption radiocarbon dated to 1627–1600 B. C., Science, 312, 548. Gelfenbaum, G., and B. Jaffe (2003), Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami, Pure Appl. Geophys., 160, 1969–1999. Gray, J. P., and J. J. Monaghan (2003), Caldera collapse and the generation of waves, Geochem. Geophys. Geosyst., 4(2), 1015, doi:10.1029/ 2002GC000411. Hampton, M. A., J. L. Homa, and J. Locat (1996), Submarine landslides, Rev. Geophys., 34(1), 33–59. Heiken, G., and F. McCoy (1984), Caldera development during the Minoan Eruption, Thira, Cyclades, Greece, J. Geophys. Res., 89, 8441–8462. Hieke, W. (2000), Transparent layers in seismic reflection records from the central Ionian Sea (Mediterranean)—Evidence from repeated catastrophic turbidite sedimentation during Quaternary, Sediment. Geol., 135, 89– 98. Hieke, W., and F. Werner (2000), The Augias megaturbidite in the central Ionian Sea (central Mediterranean) and its relation to the Holocene Santorini event, Sediment. Geol., 135, 205– 218. Kastens, K. A., and M. B. Cita (1981), Tsunami induced sediment transport in the Abyssal Mediterranean Sea, Geol. Soc. Am. Bull., 89, 591–604. Keller, J. (1980), Prehistoric pumice tephra on Aegean Islands, in Thera and the Aegean World II, edited by C. Doumas, pp. 49–56, London. Kirby, J. T., G. Wei, Q. Chen, A. B. Kennedy, and R. A. Dalrymple (1998), FUNWAVE 1.0. Fully nonlinear Boussinesq wave model, documentation and user’s manual, Rep. CACR-98-06, Cent. for Appl. Coastal Res., Dep. of Civ. and Environ. Eng., Univ. of Del., Newark. McCoy, F. W., and G. Heiken (2000), Tsunami generated by the late Bronze Age eruption of Thera, Pure Appl. Geophys., 157, 1227– 1256. Minoura, K., F. Imamura, U. Kuran, T. Nakamura, G. A. Papadopoulos, T. Takahashi, and A. C. Yalciner (2000), Discovery of Minoan tsunami deposits, Geology, 28, 59– 62. Nomanbhoy, N., and K. Satake (1995), Generation mechanism of tsunamis from the 1883 Krakatau eruption, Geophys. Res. Lett., 22(4), 509– 512. Pirazzoli, P. A. (2005), A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from Mediterranean area, Quat. Sci. Rev., 24, 1989–2001. Puig, P., A. S. Ogston, B. L. Mullenbach, C. A. Nittrouer, J. D. Parsons, and R. W. Sternberg (2004), Storm-induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin, J. Geophys. Res., 109, C03019, doi:10.1029/2003JC001918. Rebesco, M., B. Della Vedova, L. Cernobori, and A. Aloisi (2000), Acoustic facies of Holocene megaturbidites in the eastern Mediterranean, Sediment. Geol., 135, 65–74. Sultan, N., et al. (2004), Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach, Mar. Geol., 213, 291– 321. Titov, V. V., and C. E. Synolakis (1997), Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami, Geophys. Res. Lett., 24, 1315– 1318. van Kessel, T., and T. C. Kranenburg (1998), Wave-induced liquefaction and flow of subaqueous mud layers, Coastal Eng., 34, 109– 127. Ward, S. N. (2001), Landslide tsunami, J. Geophys. Res., 106, 11,201– 11,215. Ward, S. N., and S. Day (2001), Cumbre Vieja Volcano—Potential collapse and tsunami at La Palma, Canary Islands, Geophys. Res. Lett., 28, 3397– 3400. Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya (1995), A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves, J. Fluid Mech., 294, 71– 92. Yokoyama, I. (1978), The tsunami caused by the prehistoric eruption of Thera, in Thera and the Aegean World II, vol. 2, edited by C. Doumas, pp. 277– 283, London.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPareschi, M. T.en
dc.contributor.authorFavalli, M.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-7338-6069-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
915.pdf4.15 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

49
checked on Feb 10, 2021

Page view(s) 50

220
checked on Apr 17, 2024

Download(s)

57
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric