Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2379
DC FieldValueLanguage
dc.contributor.authorallLongo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallVassalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBarsanti, M.; Dipartimento di Matematica Applicata, Universita` di Pisa, Pisa, Italyen
dc.date.accessioned2007-08-27T08:35:12Zen
dc.date.available2007-08-27T08:35:12Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2379en
dc.description.abstractMagma convection and mixing, and periodic refilling, commonly occur in magma chambers.We show here that the presence of CO2 in the refilling magma is a very efficient mean of inducing buoyant-driven plume rise and large scale convection. Numerical simulations performed with an appositely developed code for the transient 2D dynamics of multicomponent compressible to incompressible fluids reveal several features of the processes of plume rise, convection and mixing in magma chambers associated with chamber refilling. A parametric study on CO2 abundance in the refilling magma shows that progressively larger amounts of this volatile produce a shift from simple plume rise and spreading near the chamber top, to complex patterns of flow circulation and large scale vorticity and mixing. Lower chamber depth and lower magma viscosity largely enhance the efficiency of mixing and convection, favoring the formation of multiple vortexes migrating with time.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofGeophys. Res. Lett.en
dc.relation.ispartofseries/33 (2006)en
dc.subjectNumerical simulationen
dc.subjectmagma chambersen
dc.titleNumerical simulation of convection and mixing in magma chambers replenished with CO2-rich magmaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL21305en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1029/2006GL27760en
dc.relation.referencesBergantz, G. W. (2000), On the dynamics of magma mixing by reintrusion: Implications for pluton assembly processes, J. Struct. Geol., 22(9), 1297–1309, doi:10.1016/S0191-8141(00)00053-5. Chau, K. T., and R. H. C. Wong (1996), Uniaxial compressive strength and point load strength of rocks, Int. J. Rock Mech. Min. Sci., 33(2), 183–188. Coombs, M. L., J. C. Eichelberger, and M. J. Rutherford (2000), Magma storage and mixing conditions for the 1953– 1974 eruptions of Southwest Trident volcano, Katmai National Park, Alaska, Contrib. Mineral. Petrol., 140, 99– 118. Costa, A. (2005), Viscosity of high crystal content melts: Dependence on solid fraction, Geophys. Res. Lett., 32, L22308, doi:10.1029/ 2005GL024303. Folch, A., M. Vazquez, R. Codina, and J. Martı` (1999), A fractionalstep finite-element method for the Navier-Stokes equations applied to magma-chamber withdrawal, Comput. Geosci., 25(3), 263 – 275, doi:S0098-3004(98)00164-2. Folch, A., R. Codina, and J. Martı` (2001), Numerical modeling of magma withdrawal during explosive caldera-forming eruptions, J. Geophys. Res., 106(B8), 16,163– 16,176. Hauke, G., and T. J. Hughes (1998), A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Eng., 153, 1 – 44, doi:S0045-7825(97)00043-1. Holloway, J. R., and J. G. Blank (1994), Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, Rev. Mineral., vol. 30, edited by M. R. Carroll and J. R. Holloway, pp. 187 – 230, Mineral. Soc. of Am., Washington, D. C. Ishii, M., and N. Zuber (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J., 25, 843– 855. Kuritani, T. (2004), Magmatic differentiation examined with a numerical model considering multicomponent thermodynamic and momentum, energy and species transport, Lithos, 74(3 – 4), 117 – 130, doi:10.1016/ j.lithos.2003.12.007. Lange, R. A. (1994), The effect of H2O, CO2 and F on the density and viscosity of silicate melts, in Volatiles in magmas, Rev. Mineral., vol. 30, edited by M. R. Carroll and J. R. Holloway, pp. 331– 369, Mineral. Soc. of Am., Washington, D. C. Mashima, H. (2004), Time scale of magma mixing between basalt and dacite estimated for the Saga-Futagoyama volcanic rocks in northwest Kyushu, southwest Japan, J. Volcanol. Geotherm. Res., 131(3–4), 333– 349, doi:101016/S0377-0273(03)00412-8. Misiti, V., C. Freda, J. Taddeucci, C. Romano, P. Scarlato, A. Longo, P. Papale, and B. T. Poe (2006), The effect of H2O on the viscosity of K-trachytic melts at magmatic temperatures, Chem. Geol., doi:10.1016/ j.chemgeo.2006.06.007, in press. Oldenburg, C. M., F. J. Spera, D. A. Yuen, and G. Sewell (1989), Dynamic mixing in magma bodies: Theory, simulations, and implications, J. Geophys. Res., 94(B7), 9215–9236. Pallister, J. S., R. P. Hoblitt, and A. G. Reyes (1992), A basalt trigger for the 1991 eruptions of Pinatubo volcano?, Nature, 356, 426–428, doi:10.1038/356426a0. Papale, P. (2005), Determination of total H2O and CO2 budgets in evolving magmas from melt inclusion data, J. Geophys. Res., 110, B03208, doi:10.1029/2004JB003033. Papale, P., R. Moretti, and D. Barbato (2006), The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts, Chem. Geol., 229(1– 3), 78–95, doi:10.1016/j.chemgeo.2006.01.013. Phillips, J. C., and A. W. Woods (2002), Suppression of large-scale magma mixing by melt-volatile separation, Earth Planet. Sci. Lett., 204(1– 2), 47– 60. Roche, O., and T. H. Druitt (2001), Onset of caldera collapse during ignimbrite eruptions, Earth Planet. Sci. Lett., 191(3 – 4), 191 – 202, doi:10.1016/S0012-821X(01)00428-9. Romano, C., D. Giordano, P. Papale, V. Mincione, D. B. Dingwell, and M. Rosi (2003), The dry and hydrous viscosities of silicate melts from Vesuvius and Phlegrean Fields, Chem. Geol., 202(1–2), 23–38, doi:10.1016/S0009-2541(03)00208-0. Snyder, D. (1997), The mixing and mingling of magmas, Endeavour, 21(1), 19– 22. Sparks, S. R. J., H. Sigurdsson, and L. Wilson (1977), Magma mixing: A mechanism for triggering acid explosive eruptions, Nature, 267, 315– 318. Spera, F. J., C. M. Oldenburg, U. R. Christensen, and M. Todesco (1995), Simulation of convection in the system KAlSi2O6 –CaMg Si2O6: Implications for compositionally zoned magma bodies, Am. Mineral., 80, 1188–1207. Trial, A. F., F. J. Spera, J. Greer, and D. A. Yuen (1992), Simulations of magma withdrawal from compositionally zoned bodies, J. Geophys. Res., 97(B5), 6713– 6733. Venetzky, D. Y., and M. J. Rutherford (1997), Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at Mount Rainier, J. Geophys. Res., 102(B9), 20,069– 20,086. Zhang, Z. X. (2002), An empirical relation between mode I fracture toughness and the tensile strength of rock, Int. J. Rock Mech. Min. Sci., 39(3), 401– 406.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLongo, A.en
dc.contributor.authorVassalli, M.en
dc.contributor.authorPapale, P.en
dc.contributor.authorBarsanti, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentDipartimento di Matematica Applicata, Universita` di Pisa, Pisa, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptSchool of Geological Sciences, University College Dublin, Belfield, Dublin 4, Ireland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptUniversità di Pisa-
crisitem.author.orcid0000-0001-6590-6346-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
897.pdf3.15 MBAdobe PDF
Show simple item record

Page view(s)

227
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric