Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2301
DC FieldValueLanguage
dc.contributor.authorallPiccinini, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMargheriti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallChiaraluce, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2007-07-05T06:31:51Zen
dc.date.available2007-07-05T06:31:51Zen
dc.date.issued2006-
dc.identifier.urihttp://hdl.handle.net/2122/2301en
dc.description.abstractWe measure crustal anisotropy parameters from several hundreds of aftershocks (ML >2.5) of the 1997 Umbria–Marche seismic sequence which occurred in a carbonatic fold and thrust belt in the shallow crust of central Apennines (Italy). The analysis of shear wave polarization shows clear S-wave splitting with prevalent fast direction ∼140◦N and average delay times of 0.06 s. The observed fast direction is parallel to the strike of the activated normal-fault system and to the maximum horizontal stress (σ 2) active in the region. This is explained by the presence of stressaligned microcracks or stress-opened fluid-filled cracks and fractures within the sedimentary coverage, even if the role of structural anisotropy cannot be completely ruled out since the maximum horizontal stress is subparallel to the major structural features of the area (main thrusts and normal faults). The peculiar spatio-temporal evolution of the seismic sequence gives us also the opportunity to investigate temporal variations of anisotropic parameters. We analyse those seismogramswhose ray paths sample the crustal volume containing two of the major fault zones, before and after the occurrence of normal faulting mainshocks (Mw >5).We observe variations of the anisotropic parameters during the days before and after the occurrence of mainshocks and we interpret them in terms of temporal variations of anisotropic parameters. This interpretation is consistent with temporal variations of the local stress condition and of the fluid pressure in the studied crustal volume proposed in the literature. However, since the spatial sampling of the selected ray paths varies with time, we cannot exclude the contribution of spatial variations of anisotropic parameters.en
dc.format.extent506237 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen_US
dc.relation.ispartofGeophysical Journal Internationalen_US
dc.relation.ispartofseries3/167 (2006)en_US
dc.subjectcrustal anisotropyen
dc.subjectfluid-filled cracksen
dc.subjectS-wave polarization.en
dc.titleSpace and time variation of crustal anisotropy during the 1997 Umbria-Marche, central Italy, seismic sequenceen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.description.pagenumber1482–1490en_US
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1111/j.1365-246X.2006.03112.xen_US
dc.relation.referencesAmato, A. et al., 1998. The 1997 Umbria-Marche, Italy, earthquake sequence: a first look at the mainshocks and aftershocks, Geophys. Res. Lett, 25(15), 2861–2864. Antonioli, A., Piccinini, D., Chiaraluce, L. & Cocco, M., 2005. Fluid flow and seismicity pattern: Evidence from the 1997 Umbria-Marche (central Italy) seismic sequence, Geophys. Res. Lett., 32(10), L10311 doi:10.1029/2004GL022256 2005. Bally, A.W., Cooper, C., Calvin, J., Burbi, L.&Ghelardoni, R., 1986. Thrust geometry of the central Apennines, Italy, Geological Society of America, 18(6), 533. Bernard, P. & Zollo, A., 1989. Inversion of near-source S polarization for parameters of double-couple point like sources, Bull. Seism. Soc. Am., 79, 1779–1809. Bouin, M.P., Tellez, J. & Bernard, P., 1996. Seismic anisotropy around the Gulf of Corinth, Greece, deduced from three component seismograms of local earthquakes and its relationship with crustal strain, J. Geophys. Res., 101, 5797–5811. Bowman, J.R.&Ando, M.A., 1987. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. J. R. astr. Soc., 88, 25– 41. Chiarabba, C.&Amato, A., 2003. Vp and Vp /Vs images in theM(sub w) 6.0 Colfiorito fault region (central Italy); a contribution to the understanding of seismotectonic and seismogenic processes, J. Geophys. Res., B, Solid Earth and Planets, 108(5), 17. Chiaraluce, L., Ellsworth, W.L., Chiarabba, C. & Cocco, M., 2003. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study, J. geophys. Res., 108(B6), 2294, doi:10.1029/2002JB002166. Chiaraluce, L. et al., 2004. Complex normal faulting in the Apennines Thrust and fold belt: the 1997–1998 seismic sequence in central Italy, Bull. Seism. Soc. Am., 94(1), 99–116. Cinti, F.R., Cucci, L., Marra, F. & Montone, P., 2000. The 1997 Umbria- Marche earthquakes (Italy): relation between the surface tectonic breaks and the area of deformation, J. Seism., 4(4), 333–343. Cocco, M. & Rice, J.R., 2002. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res., 107, doi:10.1029/2000JB00138. Cocco, M., Nostro, C.&Ekstrom. 2000. Static stress changes and fault interaction during the 1997 Umbria- Marche earthquake sequence, J. Seism., 4, 501–516. Cochran, E.S. & Vidale, J.E., 2003. Near Fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., B, Solid Earth and Planets, 108(b9), 2436, doi:10.1029/2002JB002352. Collettini, C., Chiaraluce, L., Pucci, S., Barchi, M.R. & Cocco, M., 2005. Looking at fault reactivation matching structural geology and seismological data Journal of Structural, Geology, 27(5), 937–942. Crampin, S., 1978. Seismic-wave propagation through a cracked solid : polarization as a possible dilatancy diagnostic, Geophys. J. R. astr. Soc., 53, 467–496. Crampin, S., 1993. Arguments for EDA, Can. J. Expl. Geophys., 29, 18–30. Crampin, S. & Lowell, J., 1991. A decade of shear-wave splitting in the Earth’s crust: what does it mean? what use can we make of it? and what should we do next? Geophys. J. Int., 107, 387–407. Crampin, S. & Zatsepin, S.V., 1997. Modelling the compliance of crustal rock: II—response to temporal changes before earthquakes, Geophys. J. Int., 129, 495–506. Crampin, S. & Chastin, S., 2003. A review of shear wave splitting in the crack-critical crust, Geophys. J. Int., 155, 221–240. Crampin, S. & Peacock, S., 2003. Seismic evidence for fluid-driven deformation, J. Geodyn., 36, 67–77. Deschamps, A. et al., 2000. Spatio-Temporal evolution of seismic activity during the Umbria-Marche crisis, 1997, J. Seism., 4, 377–386. Ekstrom, G., Morelli, A., Boschi, E. & Dziewonski, A.M., 1998. Moment tensor analysis of the Central Italy earthquake sequence of September– October 1997, J. Geophys. Res., 25, 1971–1974. Gamar, F. & Bernard, P., 1997. Shear wave anisotropy in the Erzincan basin and its relationship with crustal strain, J. Geophys. Res., 102, 20 373– 20 393. Gao, Y., Wang, P., Zheng, S., Wang, M. & Chen, Y.-T., 1998. Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, Southern China, Geophys. J. Int., 135, 102–112. Hernandez, B., Cocco, M., Cotton, F., Stramondo, S., Scotti,O., Courboulex, F. & Campillo, M., 2004. Rupture history of the 1997 Umbria-Marche (central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data, Annals of Geophysics, 47(4), 1355–1376. Iidaka, T. & Niu, F., 1998. Evidence for an anisotropic lower mantle beneath eastern Asia; comparison of shear-wave splitting data of SKS and P660s, Geophys. Res. Lett., 25, 675–678. Liu, Y., Booth, D., Crampin, S., Evens, R. & Leary, P., 1993. Shear-wave polarization and possible temporal variations in shear-wave splitting at Parkfield, J. Expl. Geophys., 29, 380–390. Liu, Y., Teng, T.-L. & Ben Zion, Y., 2004. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations, Bull. Seism. Soc. Am., 94, 2330–2347. McNamara, D.E. & Owens, T.J., 1993. Azimuthal shear wave velocity anisotropy in the Basin and Range province using Moho Ps converted phases, J. Geophys. Res., 98, 12 003–12 017. Meltzer, A. & Christensen, N., 2001. Nanga Parabat crustal anisotropy: implications for interpretation of crustal velocity structure and shear-wave splitting, Geophys. Res. Lett., 28, 2129–2131. Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M. & Kaus B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth, Nature, 427, 724–727 (19 Feb 2004) Letters to Nature. Montalbetti, J.F. & Kanasevich, E.R., 1970. Enhancement of teleseismic body phase with a polarization filter, Geophys. J. R. astr. Soc., 21, 119– 129. Montone, P., Amato, A. & Pondrelli, S., 1999. Active Stress Map of Italy, J. Geophys. Res., 104(B11), 25 595–25 610, doi:10.1029/1999JB900181. Nostro, C., Chiaraluce, L., Cocco, M., Baumont, D. & Scotti, O., 2005. Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche (central Italy) seismic sequence, J. Geophys. Res., 110, B05S20, doi:10.1029/2004JB003386. Peackock, S., Crampin, S., Booth, D.C. & Fletcher, J.B., 1988. Shear wave splitting in the Anza seismic gap, Southern California: Temporal variation as possible precursor, J. Geophys. Res., 93, 3339–3356. Ripepe, M., Piccinini, D. & Chiaraluce, L., 2000. Foreshock sequence of the September 1997 Umbria -Marche earthquakes, J. Seism., 4, 387–399. Rowland, H., Booth, D. & Chiu, J.M., 1993. Shear-wave splitting from microearthquake in the New Madrid seismic zone, Can. J. Expl. Geophys., 29, 352–362. Peng, Z. & Ben-Zion, Y., 2004. Sistematic analysis of crustal anisotropy along the Karadere-D ¨uzce branch of the north Anatolian fault, Geophys. J. Int., 159, 253–274. Peng, Z. & Ben-Zion, Y., 2005. Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 D ¨uzce, Turkey, earthquake sequences, Geophys. J. Int., 160, 1027–1043 doi:10.1111/j.1365-246X.2005.02569.x. Pino, N.A. & Mazza, S., 2000. The Umbria-Marche (central Italy) earthquakes: relation between rupture directivity and sequence evolution for the Mw > 5 shocks, J. Seism., 4, 451–461. Saiga, A., Hiramatsu, Y., Ooida, T. & Yamaoka, K., 2003. Spatial variation in the crustal anisotropy and its temporal variation associated with a moderate-sized earthquake in the Tokai region, central Japan, Geophys J. Int., 154, 695–705. Tadokoro, K., Ando, M.&Umeda,Y., 1999. Swave splitting in the aftershok region of the 1995 Hyogo-ken Nanbu earthquake, J. Geophys. Res., 104, 981–991. Teanby, N., Kendall, J.-M., Jones, R.H.&Barkved, O., 2004. Stress-induced temporal variations in seismic anisotropy observed in microseismic data, Geophys. J. Int., 156, 459–466, doi:10.1111/j.1365-246X.2004.02212. Zatsepin, S.V. & Crampin, S., 1997. Modelling the compliance of crustal rock: I—response of shear-wave splitting to differential stress, Geophys. J. Int., 129, 477–494. Zhang, Z. & Schwartz, S.Y., 1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system, J. geophys. Res., 99, 9651–9661. Zinke, J.C. & Zoback, M.D., 2000. Structure-related and stress-induced shear wave velocity anisotropy; observations from microearthquakes near the Calaveras Fault in Central California, Bull. seism. Soc. Am., 90(5), pp. 1305–1312.en
dc.description.obiettivoSpecifico4T. Sismicità dell'Italiaen_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextopenen
dc.relation.issn0956-540Xen_US
dc.contributor.authorPiccinini, D.-
dc.contributor.authorMargheriti, L.-
dc.contributor.authorChiaraluce, L.-
dc.contributor.authorCocco, M.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1826-646X-
crisitem.author.orcid0000-0003-3853-254X-
crisitem.author.orcid0000-0002-9697-6504-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
746.pdf494.37 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

18
checked on Feb 10, 2021

Page view(s)

162
checked on Apr 20, 2024

Download(s) 50

182
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric