Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2284
DC FieldValueLanguage
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallLucchi, R.; GRC Geociències Marines, Departament d'Estratigrafia, P. i Geociències Marines, Universitat de Barcelona, C/ Martí i Franquès,en
dc.contributor.authorallRebesco, M.; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico (Trieste), Italyen
dc.date.accessioned2007-07-03T09:03:09Zen
dc.date.available2007-07-03T09:03:09Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2284en
dc.description.abstractPaleomagnetic and rock magnetic investigations were carried out on four gravity cores recovered from the western continental rise of the Antarctic Peninsula during the SEDANO II cruise of RV OGS-Explora. The studied cores, each about 6.5 m-long, were collected at a depth of 3700–4100 m below the sea level, on the distal gentle side of sediment Drift 7, and consist of very fine-grained sediments spanning through various glacial–interglacial cycles. Detailed analysis of the paleomagnetic and rock magnetic data allowed to reconstruct relative paleointensity (RPI) records (NRM20 mT/ARM20 mT) for each core.We established a refined age model for the studied sequences by correlating individual SEDANO RPI curves to the global RPI stack SINT-800 [Y. Guyodo, J.-P. Valet, Global changes in intensity of the Earth's magnetic field during the past 800 kyr, Nature 399 (1999) 249–252]. The individual normalized SEDANO RPI records are in mutual close agreement; they were thus merged in a RPI stacking curve spanning the last 270 kyr and showing a low standard deviation. This study also points out that RPI records may provide a viable tool to date otherwise difficult-to-date sedimentary sequences, such as those deposited along peri-Antarctic margins. The new RPI chronology indicates that the sampled sedimentary sequence is younger than previously thought and allows a new high-resolution correlation to oxygen isotope stages. Furthermore, we recognized variations in the rock magnetic parameters that appear to be climatically-driven, with changes in the relative proportion of two magnetic mineral populations with distinct coercivities. Rock magnetic and lithological trends observed in the SEDANO cores indicate that during the climatic cycles of the Late Pleistocene this sector of the peri-Antarctic margin was subjected to subtle, yet identifiable, environmental changes, confirming a relatively higher instability of theWest Antarctic ice sheet with respect to the East Antarctic counterpart.en
dc.format.extent1484331 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries252 (2006)en
dc.subjectGeomagnetic relative paleointensity;en
dc.subjectEnvironmental magnetism;en
dc.titleA stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsulaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber162–179en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.epsl.2006.09.037en
dc.relation.references[1] D.V. Kent, N.D. Opdyke, Paleomagnetic field intensity variation recorded in a Brunhes epoch deep-sea sediment core, Nature 266 (1977) 156–159. [2] L. Tauxe, J.P. Valet, Relative paleointensity of the Earth's magnetic field from marine sedimentary cores: a global perspective, Phys. Earth Planet. Inter. 56 (1989) 59–68. [3] L. Tauxe, G. Wu, Normalized remanence in sediments of the western equatorial Pacific: relative paleointensity of the geomagnetic field? J. Geophys. Res. 95 (1990) 12337–12350. [4] L. Tauxe, N.J. Shackleton, Relative paleointensity records from the Ontong–Java Plateau, Geophys. J. Int. 117 (1994) 769–782. [5] L. Meynadier, J.P. Valet, R. Weeks, N.J. Shackleton, V.L. Hagee, Relative geomagnetic intensity of the field during the last 140 ka, Earth Planet. Sci. Lett. 114 (1992) 39–57. [6] E. Tric, J.P.Valet, P. Tucholka,M. Parterne, L. Labeyrie, F.Guichard, L. Tauxe,M. Fontune, Paleointensity of the geomagnetic field during the last eighty thousand years, J. Geophys. Res. 97 (1992) 9337–9351. [7] J.S. Stoner, J.E.T. Channell, C. Hillaire-Marcel, A 200 ka geomagnetic chronostratigraphy for the Labrador Sea: indirect correlation of the sediment record to SPECMAP, Earth Planet. Sci. Lett. 159 (1998) 165–181. [8] J.-P. Valet, L. Meynadier, F.C. Bassinot, F. Garnier, Relative paleointensity across the last geomagnetic reversal from sediments of the Atlantic, Indian and Pacific Oceans, Geophys. Res. Lett. 21 (1994) 485–488. [9] T. Yamazaki, Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence? Earth Planet. Sci. Lett. 169 (1999) 23–35. [10] J.E.T. Channell, D.A. Hodell, B. Lehman, Relative geomagnetic paleointensity and δ18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka, Earth Planet. Sci. Lett. 153 (1997) 103–118. [11] J.E.T. Channell, J.S. Stoner, D.A. Hodell, C.D. Charles, Geomagnetic paleointensity for the last 100 kyr from the sub- antarctic South Atlantic: a tool for inter-hemispheric correlation, Earth Planet. Sci. Lett. 175 (2000) 145–160. [12] J.E.T. Channell, Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) site 984 (Bjorn Drift) since 500 ka: comparisons with ODP site 983 (Gardar drift), J. Geophys. Res. 104 (1999) 22937–22951. [13] N. Thouveny, J. Carcaillet, E. Moreno, G. Leduc, D. Nerini, Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin, Earth Planet. Sci. Lett. 219 (2004) 377–396. [14] Y. Guyodo, J.-P. Valet, Relative variations in geomagnetic intensity from sedimentary records: the past 200.000 years, Earth Planet. Sci. Lett. 143 (1996) 23–36. [15] Y. Guyodo, J.-P. Valet, Global changes in intensity of the Earth's magnetic field during the past 800 kyr,Nature 399 (1999) 249–252. [16] C. Laj, C. Kissel, A. Mazaud, J.E.T. Channell, J. Beer, North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event, Philos. Trans. R. Soc. Lond. A-358 (2000) 1009–1025. [17] J.S. Stoner, C. Laj, J.E.T. Channell, C. Kissel, South Atlantic (SAPIS) and North Atlantic (NAPIS) geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation, Quat. Sci. Rev. 21 (2002) 1141–1151. [18] C. Laj, C. Kissel, J. Beer, High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values, Timescales of the Paleomagnetic field, AGU Geophysical Monograph Series, vol. 145, 2004, pp. 255–265. [19] J. Imbrie, J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, N.J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman (Eds.), Milankovitch and Climate (Pt. 1), NATO ASI Ser. C, Math Phys. Sci., vol. 126, 1984, pp. 269–305. [20] D.G. Martinson, N.G. Pisias, J.D. Hays, J. Imbrie, T.C. Moore, N.J. Shackleton, Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy, Quat. Res. 27 (1987) 1–19. [21] F.C. Bassinot, L.D. Labeyrie, E. Vincent, X. Quidelleur, N.J. Shackleton, Y. Lancelot, The astronomical theory of climate and the age of the Brunhes–Matuyama reversal, Earth Planet. Sci. Lett. 126 (1994) 91–108. [22] D.V. Kent, D.A. Schneider, Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval, Earth Planet. Sci. Lett. 129 (1995) 135–144. [23] P. Hartl, L. Tauxe, A pre-cursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments, Earth Planet. Sci. Lett. 138 (1996) 121–136. [24] C. Laj, C. Kissel, F. Garnier, E. Herrero-Bervera, Relative geomagnetic field intensity and reversals for the last 1.8 My from a central equatorial Pacific core, Geophys. Res. Lett. 23 (1996) 3393–3396. [25] K.L. Verosub, E. Herrero-Bervera, A.P. Roberts, Relative geomagnetic paleointensity across the Jaramillo subchron and the Matuyama/Brunhes boundary, Geophys. Res. Lett. 23 (1996) 467–470. [26] Y.S. Kok, L. Tauxe, A relative geomagnetic paleointensity stack from Ontong–Java Plateau sediments for the Matuyama, J. Geophys. Res. 104 (1999) 25401–25413. [27] Y. Guyodo, G.D. Acton, S. Brachfeld, J.E.T. Channell, A sedimentary paleomagnetic record of the Matuyama Chron from the western Antarctic margin (ODP Site 1101), Earth Planet. Sci. Lett. 191 (2001) 61–74. [28] J. Dinarès-Turell, L. Sagnotti, A.P. Roberts, Relative geomagnetic paleointensity from the Jaramillo subchron to the Matuyama/ Brunhes boundary as recorded in a Mediterranean piston core, Earth Planet. Sci. Lett. 194 (2002) 327–341. [29] C.-S. Horng, A.P. Roberts, W.-T. Liang, A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea, J. Geophys. Res. 108 (2003) 2059, doi:10.1029/2001JB001698. [30] T. Yamazaki, H. Oda, A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores, Geochem. Geophys. Geosyst. 4 (2005), doi:10.1029/2005GC001001. [31] A.P. Roberts, M. Winklhofer, Why are geomagnetic excursions not always recorded in sediments? Constraints from postdepositional remanent magnetization lock-in modeling, Earth Planet. Sci. Lett. 227 (3–4) (2004) 345–359. [32] L. Sagnotti, F. Budillon, J. Dinarès-Turell, M. Iorio, P. Macrì, Evidence for a variable paleomagnetic lock-in depth in the Holocene sequence from the Salerno Gulf (Italy): implications for “high-resolution” paleomagnetic dating, Geochem. Geophys. Geosyst. 6 (11) (2005), doi:10.1029/2005GC001043. [33] D.G. McMillan, C.G. Constable, R.L. Parker, Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations, Phys. Earth Planet. Inter. 145 (2004) 37–54. [34] L. Sagnotti, P. Macrì, A. Camerlenghi, M. Rebesco, Environmental magnetism of late Pleistocene sediments from the pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events, Earth Planet. Sci. Lett. 192 (2001) 65–80. [35] S.A. Brachfeld, G.D. Acton, Y. Guyodo, S.K. Banerjee, Highresolution paleomagnetic records from Holocene sediments from the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett. 181 (2000) 421–441. [36] S.A. Brachfeld, E.W. Domack, C. Kissel, C. Laj, A. Leventer, S.E. Ishman, R. Gilbert, A. Camerlenghi, L.B. Eglinton, Holocene history of the Larsen ice shelf constrained by geomagnetic paleointensity dating, Geology 31 (2003) 749–752. [37] P. Macrì, L. Sagnotti, J. Dinarès-Turell, A. Caburlotto, A composite record of late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica), Phys. Earth Planet. Inter. 151 (2005) 223–242. [38] J.S. Stoner, J.E.T., D.A. Hodell, C.D. Charles, A ∼580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drlling Program Site 1089), J. Geophys. Res. 108 (B5) (2003) 2244, doi:10.1029/2001JB001390. [39] M. Rebesco, R.D. Larter, A. Camerlenghi, P.F. Barker, Giant sediment drifts on the continental rise west of the Antarctic Peninsula, Geo Mar. Lett. 16 (1996) 65–75. [40] M. Rebesco, R.D. Larter, P.F. Barker, A. Camerlenghi, L.E. Vanneste, The history of sedimentation on the continental rise west of the Antarctic Peninsula, Am. Geophys. Union Antarct. Res. Ser. 71 (1997) 29–49. [41] G.R. Lucchi, M. Rebesco, A. Camerlenghi, M. Busetti, L. Tomadin, G. Villa, D. Persico, C. Morigi, M.C. Bonci, G. Giorgetti, Mid-late Pleistocene glacimarine sedimentary processes of a high-latitude deep-sea sediment drift (Antarctic Peninsula margin), Mar. Geol. 189 (2002) 343–370. [42] G.R. Lucchi, M. Rebesco, Glacial contourites on the Antarctic Peninsula margin: insight for palaeoenvironmental and palaeoclimatic conditions, In: Economic and Palaeoceanographic Importance of Contourites, A. Viana, M. Rebesco (Eds.), Geological Society of London Special Publication 276 (in press). [43] C.J. Pudsey, A. Camerlenghi, Glacial–interglacial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula, Antarct. Sci. 10 (1998) 286–308. [44] C.J. Pudsey, Sedimentation on the continental rise west of the Antarctic Peninsula over the last three glacial cycles, Mar. Geol. 167 (2000) 313–338. [45] G. Villa, D. Persico, M.C. Bonci, R.G. Lucchi, C. Morigi, M. Rebesco, Biostratigraphic characterization and Quaternary microfossil palaeoecology in sediment drifts west of the Antarctic Peninsula—implications for cyclic glacial–interglacial deposition, Palaeogeogr. Palaeoclimatol. Palaeoecol. 198 (2003) 237–263 (26). [46] EPICA community members, Eight glacial cycles from an Antarctic ice core, Nature 429 (2004) 623–628. [47] B. Narcisi, J.R. Petit, B. Delmonte, I. Basile-Doelsch, V. Maggi, Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): implications for past atmospheric circulation and ice core stratigraphic correlations, Earth Planet. Sci. Lett. 239 (2005) 253–265. [48] J.L. Smellie, The upper Cenozoic tephra record in the south polar region: a review, Glob. Planet. Change 21 (1999) 51–70. [49] H. Heinrich, Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quat. Res. 29 (1988) 142–152. [50] G. Bond, H. Heinrich, W. Broecker, L. Labeyrie, J. McManus, J. Andrews, S. Huon, R. Jantschik, S. Clasen, C. Simet, K. Tedesco, M. Klas, G. Bonani, S. Ivy, Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period, Nature 360 (1992) 245–249. [51] G. Bond, W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, G. Bonani, Correlations between climate records from North atlanctic sediments and Greenland ice, Nature 365 (1993) 143–147. [52] L. Sagnotti, P. Rochette, M. Jackson, F. Vadeboin, J. Dinarès- Turell, A. Winkler, “Mag-Net” Science Team, inter-laboratory calibration of low field and anhysteretic susceptibility measurements, Phys. Earth Planet. Inter. 138 (2003) 25–38. [53] S.A. Brachfeld, C. Kissel, C. Laj, A. Mazaud, Viscous behavior of u-channels during acquisition and demagnetization of remanences: implications for paleomagnetic and rock-magnetic investigations, Phys. Earth Planet. Inter. 145 (2004) 1–8. [54] J.L. Kirschvink, The least-square line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc. 62 (1980) 699–718. [55] C.G. Langereis, M.J. Dekkers, G.J. De Lange, M.E. Patern, P.J.M. Van Santvoort, Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes, Geophys. J. Int. 129 (1997) 75–94. [56] S.P. Lund, G. Acton, B. Clement, M. Hastedt, M. Okada, R. Williams, Geomagnetic field excursions occurred often during the last million years, Eos, Trans. Am. Geophys. Union 79 (1998) 178–179. [57] B.S. Singer, M.K. Relle, K.A. Hoffman, A. Battle, C. Laj, H. Guillou, J.C. Carracedo, Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale, J. Geophys. Res. 107 (B11) (2002) 2307, doi:10.1029/2001JB001613. [58] H. Oda, H. Shibuya, Deconvolution of long-core paleomagnetic data of Ocean Drilling Program by Akaike's Bayesian Information Criterion minimization, J. Geophys. Res. 101 (1996) 2815–2834. [59] Y. Guyodo, J.E.T. Channell, R. Thomas, Deconvolution of uchannel paleomagnetic data near geomagnetic reversals and short events, Geophys. Res. Lett. 29 (17) (2002) 1845, doi:10.1029/ 2002GL014927. [60] J.W. King, S.K. Banerjee, J. Marvin, A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years, J. Geophys. Res. 88 (B7) (1983) 5911–5921. [61] L. Tauxe, Sedimentary records of relative paleointenstiy of the geomagnetic field: theory and practice, Rev. Geophys 31 (1993) 319–354. [62] J.-P. Valet, L. Meynadier, Geomagnetic field intensity and reversals during the past four million years, Nature 366 (1993) 234–238. [63] J.-P. Valet, L. Meynadier, A comparison of different techniques for relative paleointensity, Geophys. Res. Lett. 25 (1998) 89–92. [64] J.-P. Valet, Time variations in geomagnetic intensity, Rev. Geophys. 41 (2003) 1/1004, doi:10.1029/2001RG000104. [65] D. Paillard, L. Labeyrie, P. Yiou, Macintosh program performs time-series analysis, Eos, Trans. Am. Geophys. Union 77 (1996) 397. [66] R. Thompson, F. Oldfield, Environmental Magnetism, Allen and Unwin, London, 1986. [67] N. Thouveny, J.-L. Beaulleu, E. Bonifay, K.M. Creer, J. Guiot, M. Icole, S. Johnsen, J. Jouzel,M. Reille, T.Williams, D.Williamson, Climate variations in Europe of the past 140 kyr deduced fromrock magnetism, Nature 371 (1994) 503–506. [68] K.L. Verosub, A.P. Roberts, Environmental magnetism: past, present and future, J. Geophys. Res. 100 (1995) 2175–2192. [69] M.J. Dekkers, Environmental magnetism: an introduction, Geol. Mijnb. 76 (1997) 163–182. [70] J.S. Stoner, J.T. Andrews, The North Atlantic as a Quaternary magnetic archive, in: B.A. Maher, R. Thompson (Eds.), Quaternary Climates, Environments and Magnetism, UK Cambridge University press, 1999, pp. 49–80. [71] B.A. Maher, R. Thompson, M.W. Hounslow, Introduction, in: B.A. Maher, R. Thompson (Eds.), Quaternary Climates, Environments and Magnetism,UK Cambridge University press, 1999, pp. 1–48. [72] J.W. King, S.K. Banerjee, J. Marvin, Ö. Özdemir, A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments, Earth Planet. Sci. Lett. 59 (1982) 404–419. [73] J. Bloemendal, J.W. King, F.R. Hall, S.-J. Doh, Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology, J. Geophys. Res. 97 (1992) 4361–4375. [74] B.A. Maher, R. Thompson, Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols, Quat. Res. 37 (1992) 155–170. [75] S.K. Banerjee, J. King, J. Marvin, A rapid method for magnetic granulometry with applications to environmental studies, Geophys. Res. Lett. 8 (1981) 333–336. [76] R.A. Berner, Sedimentary pyrite formation, Am. J. Sci. 268 (1970) 1–23. [77] R.A. Berner, Sedimentary pyrite formation: an update, Geochim. Cosmochim. Acta 48 (1984) 605–615. [78] S.J. Kao, C.S. Horng, K.K. Liu, A.P. Roberts, Carbon–sulfur– iron relationships in sedimentary rocks from Southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation, Chem. Geol. 203 (2004) 153–168. [79] R. Day, M. Fuller, V.A. Schmidt, Hysteresis properties of titanomagnetites. Grain-size and compositional dependence, Phys. Earth Planet. Inter. 13 (1977) 260–267. [80] D.J. Dunlop, Theory and application of the day plot (MRS/MS versus HCR/HC). 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res. 107 (2002),en
dc.description.fulltextreserveden
dc.contributor.authorMacrì, P.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorLucchi, R.en
dc.contributor.authorRebesco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentGRC Geociències Marines, Departament d'Estratigrafia, P. i Geociències Marines, Universitat de Barcelona, C/ Martí i Franquès,en
dc.contributor.departmentIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico (Trieste), Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico, TS, Italy-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0001-5111-6968-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
796.pdf1.45 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

18
checked on Feb 10, 2021

Page view(s) 20

288
checked on Mar 27, 2024

Download(s)

32
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric