Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2281
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallEgli, R.; Institute for Rock Magnetism, Minneapolis, Minnesota, USA.en
dc.contributor.authorallMondino, M.; Regione Lazio, Rome, Italy.en
dc.date.accessioned2007-07-03T09:00:11Zen
dc.date.available2007-07-03T09:00:11Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2281en
dc.description.abstractEnvironmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 mm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.en
dc.format.extent1172985 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofJOURNAL OF GEOPHYSICAL RESEARCH,en
dc.relation.ispartofseries111(2006)en
dc.subjectMagneticen
dc.titleMagnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sourcesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12S22en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doidoi:10.1029/2006JB004508en
dc.relation.referencesAvila, A., I. Queralt-Mitjans, and M. Alarcon (1997), Mineralogical composition of African dust delivered by red rains over northeastern Spain, J. Geophys. Res., 102, 21,977– 21,996. Caquineau, S., A. Gaudichet, L. Gomes, and M. Legrand (2002), Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions, J. Geophys. Res., 107(D15), 4251, doi:10.1029/2000JD000247. Cisowski, S. (1981), Interacting vs. non-interacting single-domain behavior in natural and synthetic samples, Phys. Earth Planet. Inter., 26, 77– 83. Day, R., M. D. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260– 266. Dunlop, D. J. (2002a), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Dunlop, D. J. (2002b), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils, J. Geophys. Res., 107(B3), 2057, doi:10.1029/2001JB000487. Egli, R. (2003), Analysis of the field dependence of remanent magnetization curves, J. Geophys. Res., 108(B2), 2081, doi:10.1029/2002JB002023. Egli, R. (2004), Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments, Stud. Geophys. Geod., 48, 391– 446. Egli, R., and W. Lowrie (2002), Anhysteretic remanent magnetization of fine magnetic particles, J. Geophys. Res., 107(B10), 2209, doi:10.1029/ 2001JB000671. Flanders, P. (1999), Identifying fly ash at a distance from fossil fuel power stations, Environ. Sci. Technol., 33, 528– 532. Flanders, P. J. (1994), Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment, J. Appl. Phys., 75, 5931– 5936. Galassi, C., B. Ostro, F. Forastiere, S. Cattani, M. Martuzzi, and R. Bertolini (2000), Exposure to PM10 in the eight major Italian cities and quantification of the health effects, poster presented at the ISEE 2000 Meeting, Buffalo, N. Y., 19 – 22 Aug. (Available online at http://www.who.dk/ document/hms/pm10.pdf) Gautam, P., U. Blaha, E. Appel, and G. Neupane (2004), Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal, Phys. Chem. Earth, 29, 973–984. Georgeaud, V. M., P. Rochette, J. P. Ambrosi, D. Vandamme, and D. Williamson (1997), Relationship between heavy metals and magnetic properties in a large polluted catchments: The Etang de Berre (south France), Phys. Chem. Earth, 22, 211 – 214. Goddu, S. R., E. Appel, D. Jordanova, and F. Wehland (2004), Magnetic properties of road dust from Visakhapatnam (India) – relationship to industrial pollution and road traffic, Phys. Chem. Earth, 29, 985– 995. Go´mez-Paccard, M., G. McIntosh, V. Villasante, M. L. Osete, J. Rodriguez- Ferna´ndez, and J. C. Go´mez-Sal (2004), Low-temperature and high magnetic field measurements of atmospheric particulate matter, J. Magn. Magn. Mater., 272, 2420– 2421. Hanesch, M., R. Scholger, and D. Rey (2003), Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves, Atmos. Environ., 37, 5125– 5133. Harrison, R. M., and J. Yin (2000), Particulate matter in the atmosphere: Which particle properties are important for its effect on health?, Sci. Total Environ., 249, 85– 101. Hoffmann, V., M. Knab, and E. Appel (1999), Magnetic susceptibility mapping of roadside pollution, J. Geochem. Explor., 66, 313– 326. Hunt, A., J. Jones, and F. Oldfield (1984), Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin, Sci. Total Environ., 33, 129–139. Liu, Q., M. J. Jackson, S. K. Banerjee, B. A. Maher, C. Deng, Y. Pan, and R. Zhu (2004a), Mechanism of the magnetic susceptibility enhancements of the Chinese loess, J. Geophys. Res., 109, B12107, doi:10.1029/ 2004JB003249. Liu, Q., S. K. Banerjee, M. J. Jackson, C. Deng, Y. Pan, and Z. Rixiang (2004b), New insights into partial oxidation model of magnetites and thermal alteration of magnetic mineralogy of the Chinese loess in air, Geophys. J. Int., 158, 506– 514. Maher, B. A., R. Thompson, and M. W. Hounslow (1999), Introduction, in Quaternary Climates, Environments and Magnetism, edited by B. A. Maher and R. Thompson, pp. 1 – 48, Cambridge Univ. Press, New York. Matzka, J., and B. A. Maher (1999), Magnetic biomonitoring of roadside tree leaves: Identification of spatial and temporal variations in vehiclederived particles, Atmos. Environ., 33, 4565– 4569. Moreno, E., L. Sagnotti, A. Winkler, J. Dinare`s-Turell, and A. Cascella (2003), Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves, Atmos. Environ., 37, 2967– 2977. Morris,W. A., J. K. Versteeg, D.W. Bryant, A. E. Legzdins, B. E. McCarry, and H. X. Marvin (1995), Preliminary comparisons between mutagenic and magnetic susceptibility of respirable airborne particle, Atmos. Environ., 29, 3441–3450. Muxworthy, A. R., J. Matzka, and N. Petersen (2001), Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data, Atmos. Environ., 35, 4379–4386. Muxworthy, A. R., E. Schmidbauer, and N. Petersen (2002), Magnetic properties and Mo¨ ssbauer spectra of urban atmospheric particulate matter: A case study from Munich, Germany, Geophys. J. Int., 150, 558–570. Muxworthy, A. R., J. Matzka, A. F. Davila, and N. Petersen (2003), Magnetic signature of daily sampled urban atmospheric particles, Atmos. Environ., 37, 4163–4169. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667. Pope, C. A., III, and D. W. Dockery (1999), Epidemiology of particle effects, in Air Pollution and Health, edited by S. T. Holgate et al., pp. 673– 705, Elsevier, New York. Regione Lazio (2005), Progetto Polveri Sottili, Relazione di sintesi, stato di avanzamento al febbraio 2005, 56 pp., Rome, Feb. Regione Lazio (2006), Progetto Polveri Sottili, final report, 266 pp., Rome, Jan. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), FORC diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475. Sagnotti, L., P. Rochette, M. Jackson, F. Vadeboin, J. Dinare`s-Turell, A. Winkler, and ‘‘Magnet’’ Science Team (2003), Inter-laboratory calibration of low field and anhysteretic susceptibility measurements, Phys. Earth Planet. Inter., 138, 25– 38. Shilton, V. F., C. A. Booth, J. P. Smith, P. Giess, D. J. Mitchell, and C. D. Williams (2005), Magnetic properties of urban street dust and their relationship with organic matter content in the West Midlands, UK, Atmos. Environ., 39, 3651– 3659. Shu, J., J. A. Dearing, A. P. Morse, L. Z. Yu, and N. Yuan (2001), Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties, Atmos. Environ., 35, 2615– 2625. Spassov, S., F. Heller, R. Kretzschmar, M. E. Evans, L. P. Yue, and D. K. Nourgaliev (2003), Detrital and pedogenic mineral phases in loess/ paleosol sequence at Lingtai (Central Chinese Loess Plateau), Phys. Earth Planet. Inter., 140, 255– 275. Spassov, S., R. Egli, F. Heller, D. K. Nourgaliev, and J. Hannam (2004), Magnetic quantification of urban pollution sources in atmospheric particulate matter, Geophys. J. Int., 159, 555–564. Urbat,M., E. Lehndorff, and L. Schwark (2004), Biomonitoring of air quality in Cologne conurbation using pine needles as a passive sampler– part I: Magnetic properties, Atmos. Environ., 38, 3781– 3792. Weber, S., P. Hoffmann, J. Ensling, A. N. Dedik, S. Weinbruch, G. Miehe, P. Gutlich, and H. M. Ortner (2000), Characterization of iron compounds from urban and rural aerosol sources, J. Aerosol Sci., 31(8), 987– 997. Wichmann, H. E., and A. Peters (2000), Epidemiological evidence of the effects of ultrafine particle exposure, Philos. Trans. R. Soc. London, Ser. A, 358, 2751–2769. World Health Organization (2002), Health impact assessment of air pollution in the eight major Italian cities, EURO/02/5040650, Geneva. (Available at http://www.euro.who.int/document/e75492.pdf) World Health Organization (2004), Particulate matter air pollution: How it harms health, Fact Sheet EURO/04/05, Berlin, Copenhagen, Rome, 14 April. (Available at http://www.euro.who.int/document/mediacentre/ fs0405e.pdf) Xie, S., J. A. Dearing, and J. Bloemendal (2000), The organic content of street dust in Liverpool, UK, and its association with dust magnetic properties, Atmos. Environ., 34, 269–275. R. Egli, Institute for Rock Magnetism, Newton Horace Winchell School of Earth Sciences, 219 Shepard Laboratories, 100 Union Street S.E., Minneapolis, MN 55455-0128, USA. P. Macrı` and L. Sagnotti, Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, I-00143 Rome, Italy. (sagnotti@ingv.it) M. Mondino, Regione Lazio, Viale del Tintoretto 430, I-00142 Rome, Italy.en
dc.description.fulltextreserveden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorMacrì, P.en
dc.contributor.authorEgli, R.en
dc.contributor.authorMondino, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentInstitute for Rock Magnetism, Minneapolis, Minnesota, USA.en
dc.contributor.departmentRegione Lazio, Rome, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstitute for Rock Magnetism, Minneapolis, Minnesota, USA.-
crisitem.author.deptRegione Lazio, Rome, Italy.-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
880.pdf1.15 MBAdobe PDF
Show simple item record

Page view(s) 20

255
checked on Apr 24, 2024

Download(s)

38
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric