Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2278
DC FieldValueLanguage
dc.contributor.authorallNicolosi, I.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.date.accessioned2007-07-03T08:57:32Zen
dc.date.available2007-07-03T08:57:32Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2278en
dc.description.abstractSpectral analysis of both shipborne and airborne magnetic maps of the southern Tyrrhenian Sea reveals seven subparallel positive-negative magnetic anomaly stripes over the flat-lying deep floor of the Marsili oceanic basin. This represents the first evidence of oceanic magnetic anomalies in the Tyrrhenian Sea. The central positive stripe is along the Marsili seamount, a superinflated spreading ridge located at the basin axis. The stratigraphy of Ocean Drilling Program Site 650 and K/Ar ages from the Marsili seamount suggest that the Marsili Basin opened at the remarkable full-spreading rate of 19 cm/ yr between ca. 1.6 and 2.1 Ma about the Olduvai subchron. This is the highest spreading rate ever documented, including that observed at the Cocos-Pacific plate boundary. Renewed but slow spreading during the Brunhes chron (after 0.78 Ma), coupled with huge magmatic inflation, gave rise to the Marsili volcano. Our new data and interpretation show that backarc spreading of the Tyrrhenian Sea was episodic, with sudden rapid pulses punctuating relatively long periods of tectonic quiescence.en
dc.format.extent648726 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofGeologyen
dc.relation.ispartofseries/34(2006)en
dc.subjectmagnetic anomalies,en
dc.subjectocean spreading,en
dc.titleUltrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysisen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber717-720en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1130/G22555.1en
dc.relation.referencesAGIP spa, 1981, Carta Magnetica-Anomalie del Campo magnetico residuo: Milanese, Italy, S. Donato, scale 1/500,000. Bazin, S., Harding, A.J., Kent, G.M., Orcutt, J.A., Tong, C.H., Pye, J.W., Singh, S.C., Barton, P.J., Sinha, M.C., White, R.S., Hobbs, R.W., and Van Avendonk, H.J.A., 2001, Three-dimensional shallow crustal emplacement at the 9 03 N overlapping spreading centre on the East Pacific Rise: Correlations between magnetization and tomographic images: Journal of Geophysical Research, v. 106, no. B8, p. 16,101–16,117, doi: 10.1029/ 2001JB000371. Bear, G.W., Al-Shukri, H.J., and Rudman, A.J., 1995, Linear inversion of gravity data for 3-D density distribution: Geophysics, v. 60, p. 1354–1364, doi: 10.1190/1.1443871. Bevis, M., Taylor, F.W., Schutz, B.E., Recy, J., Isacks, B.L., Helu, S., Singh, R., Kendrick, E., Stowell, J., Taylor, B., and Calmantli, S., 1995, Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc: Nature, v. 374, p. 249, doi: 10.1038/374249a0. Blakely, R.J., 1976, An age-dependent, two layer model for marine magnetic anomalies: Geophysics of the Pacific Ocean Basin and its Margins, v. 19, p. 227–234. Cande, S.C., and Kent, D.V., 1976, Constraints imposed by the shape of marine magnetic anomalies on the magnetic source: Journal of Geophysical Research, v. 81, p. 4157–4162. Cande, S.C., and Kent, D.V., 1995, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic: Journal of Geophysical Research, v. 100, p. 6093–6095. Chiappini, M., Meloni, A., Boschi, E., Faggioni, O., Beverini, N., Carmisciano, C., and Marson, I., 2000, Onshore-offshore integrated shaded relief magnetic anomaly map at sea level of Italy and surrounding areas: Annali di Geofisica, v. 43, no. 5, scale 1/1,500,000. Cita, M.B., Rio, D., and Sprovieri, R., 1999, The Pliocene series: Chronology of the type Mediterranean record and standard chronostratigraphy, in Wrenn, J.H., and Suc, J.P., eds., Palynology, climate and sequence stratigraphy of the Pliocene: American Association of Stratigraphic Palynologists, Special Volume, p. 49–63. Dyment, J., and Arkani-Hamed, J., 1998, Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world’s oceans: Journal of Geophysical Research, v. 103, no. B7, p. 15,423–15,441, doi: 10.1029/97JB03574. Faggioni, O., Pinna, E., Savelli, C., and Schreider, A.A., 1995, Geomagnetism and age study of Tyrrhenian seamounts: Geophysical Journal International, v. 123, p. 915–930. Gee, J., and Kent, D.V., 1994, Variations in layer 2A thickness and the origin of the central anomaly magnetic high: Geophysical Research Letters, v. 21, p. 297–300, doi: 10.1029/93GL03422. Hall, J.M., and Muzzati, A., 1999, Delayed magnetization of the deeper kilometre of oceanic crust at Deep Sea Drilling Project Site 504: Journal of Geophysical Research, v. 104, p. 12,843–12,851, doi: 10.1029/ 1999JB900105. Kastens, K.A., and 21 others, 1988, ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back arc basin evolution: Geological Society of America Bulletin, v. 100, p. 1140–1156. Kastens, K.A., and 20 others, 1990, Proceedings of the Ocean Drilling Program, Scientific results, Volume 107: College Station, Texas, Ocean Drilling Program, 722 p. Malinverno, A., and Ryan, W.B.F., 1986, Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere: Tectonics, v. 5, p. 227–245. Marani, M., and Trua, T., 2002, Thermal constriction and Tera faulting at the origin of a super-inflated spreading centre: The Marsili volcano, Tyrrhenian Sea: Journal of Geophysical Research, Solid Earth, v. 107, no. B9, p. EPM 3–1. Mattei, M., Petrocelli, V., Lacava, D., and Schiattarella, M., 2004, Geodynamic implications of Pleistocene ultrarapid vertical-axis rotations in the Southern Apennines, Italy: Geology, v. 32, p. 789–792, doi: 10.1130/G20552.1. Patacca, E., Sartori, R., and Scandone, P., 1990, Tyrrhenian basin and Apenninic arcs: Kinematic relations since late Tortonian times: Memorie della Societa` Geologica Italiana, v. 45, p. 425–451. Sartori, R., 2004, The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere: Episodes, v. 26, p. 217–221. Scarascia, A., Lozej, A., and Cassinis, R., 1994, Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles: Bollettino di Geofisica Teorica Applicata, v. 36, no. 141–144, p. 5–21. Selli, R., Lucchini, F., Rossi, P.L., Savelli, C., and Del Monte, M., 1977, Dati geologici, petrolchimici e radiometrici sui vulcani centro-tirrenici: Giornale di Geologia, v. 42, p. 221–246. Smith, G.M., and Banerjee, S.K., 1986, Magnetic structure of the upper kilometer of the marine crust at Deep Sea Drilling Project Site 504B, eastern Pacific Ocean: Journal of Geophysical Research, v. 91, no. B10, p. 10,337–10,354. Speranza, F., and Chiappini, M., 2002, Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis: Journal of Geophysical Research, Solid Earth, v. 107, no. B11, p. 2290, doi: 10.1029/2000JB000027. Taylor, B., 1995, Backarc basins: Tectonics and magmatism: New York, Plenum, 524 p. Tivey, M., 1996, The vertical magnetic structure of ocean crust determined from near bottom magnetic field measurements: Journal of Geophysical Research, v. 101, p. 20,275–20,296. Wilson, D.S., 1996, Fastest known spreading on the Miocene Cocos-Pacific plate boundary: Geophysical Research Letters, v. 23, p. 3003–3006, doi: 10.1029/96GL02893.en
dc.description.fulltextreserveden
dc.contributor.authorNicolosi, I.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorChiappini, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-0711-9923-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
734.pdf633.52 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

111
checked on Feb 10, 2021

Page view(s) 10

381
checked on Apr 17, 2024

Download(s) 50

68
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric