Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2269
DC FieldValueLanguage
dc.contributor.authorallSpadea, P.; Dipartimento di Georisorse e Territorio, Università di Udine, Via Cotonificio 114, I-33100 Udine, Italyen
dc.contributor.authorallD'antonio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:50:22Zen
dc.date.available2007-07-03T08:50:22Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2269en
dc.description.abstractThe Southern Uralides are a collisional orogen generated in the Late Devonian– Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra-oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high-pressure–low-temperature metamorphic rocks of continental origin. The preorogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid-immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc-alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal-mid-oceanic ridge basalt-type mantle sources with various enrichments in a slabderived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre-orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high-temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra-oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present-day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre-orogenic evolution.en
dc.format.extent668099 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofIsland Arcen
dc.relation.ispartofseries/15 (2006)en
dc.subjectarc–continent collisionen
dc.subjectforearc ophiolitesen
dc.subjectgeochemistryen
dc.subjectintra-oceanic island arcen
dc.subjectmetamorphic soleen
dc.subjectNd isotopesen
dc.subjectPb isotopesen
dc.subjectSouthern Uralidesen
dc.subjectSr isotopesen
dc.titleInitiation and evolution of intra-oceanic subduction in the Uralides: Geochemical and isotopic constraints from Devonian oceanic rocks of the Southern Urals, Russiaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber7-25en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1111/j.1440-1738.2006.00514.xen
dc.relation.referencesANDERS E. & GREVESSE N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197–214. BARSDELL M. 1988. Petrology and petrogenesis of clinopyroxene-rich tholeiitic lavas, Merelava volcano, Vanuatu. Journal of Petrology 29, 927–64. BEANE R. & CONNELLY J. 2000. 40Ar/39Ar, U–Pb, and Sm–Nd constraints on the timing of metamorphic events in the Maksyutov Complex, southern Ural Mountains. Journal of the Geological Society of London 157, 811–22. BEN OTHMAN D., WHITE W. M. & PATCHETT J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters 94, 1–21. BLOOMER S. H. & HAWKINS J. W. 1987. Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contributions to Mineralogy and Petrology 89, 256–62. BLOOMER S. H., TAYLOR B., MACLEOD C. J. et al. 1995. Early arc volcanism and the ophiolite problem: A perspective from drilling in the Western Pacific. In Taylor B. & Natland J. (eds). Active Margins and Marginal Basins of the Western Pacific, American Geophysical Union Geophysical Monograph, Vol. 88, pp. 1–30. American Geophysical Union, Washington, DC. BROWN D., JUHLIN C., ALVAREZ-MARRON J., PEREZESTAÙN A. & OSLIANSKI A. 1998. Crustal-scale structure and evolution of an arc–continent collision zone in the southern Urals, Russia. Tectonics 17, 158–71. BROWN D. & SPADEA P. 1999. Processes of forearc and accretionary complex formation during arc–continent collision in the southern Urals. Geology 27, 649–52. CORTESOGNO L., GAGGERO L., SAVELIEVA G., SCARROW J. H. & SPADEA P. 1998. Garnet pyroxenites from the Myndiak Massif, Southern Urals: Records of early accretion of crust and lithospheric mantle. Uralides Europrobe Workshop Abstract Volume, 15–16. DANYUSHEVSKY L. V., SOBOLEV A. V. & FALLOON T. J. 1995. North Tongan high-Ca boninite petrogenesis: The role of Samoan plume and subduction zone– transform fault transition. Journal of Geodynamics 20, 219–41. DE PAOLO D. J. 1988. Neodymium Isotope Geochemistry: An Introduction. Springer Verlag, New York. DESCHAMPS A. & LALLEMAND S. 2003. Geodynamic setting of Izu Bonin Mariana boninites. In Larter R. D. & Leat P. T. (eds). Intra-Oceanic Subduction Systems, Geological Society of London Special Publication 219, 163–85. DILEK Y. 2003. Ophiolite concept and its evolution. In Dilek Y. & Newcomb S. (eds). Ophiolite Concept and the Evolution of the Geological Thought, Geological Society of America Special Paper 373, 1–16, Boulder, CO. EDWARDS R. L. & WASSERBURG G. J. 1985. The age and emplacement of obducted oceanic crust in the Urals from Sm–Nd and Rb–Sr systematics. Earth and Planetary Science Letters 72, 389–404. EGGINS S. M. 1993. Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contributions to Mineralogy and Petrology 114, 79–100. FALLOON T. J. & CRAWFORD A. J. 1991. The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth and Planetary Science Letters 102, 375–94. FAURE G. 1986. Principles of Isotope Geology, 2nd edn. John Wiley & Sons, New York. FRYER P. 1995. Geology of the Mariana Trough. In Taylor B. (ed.). Back-Arc Basins: Tectonics and Magmatism, pp. 237–79. Plenum Press, New York. GAGGERO L., SPADEA P., CORTESOGNO L., SAVELIEVA G. N. & PERTSEV A. N. 1997. Geochemical investigation of the igneous rocks from Nurali ophiolite mélange zone, Southern Urals. Tectonophysics 276, 139–61. GRADSTEIN F. M., OGG J. G. & SMITH A. G. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge. GREEN D. H., SCHMIDT M. W. & HIBBERSON W. O. 2004. Island-arc ankaramites: Primitive melts from fluxed refractory lherzolitic mantle. Journal of Petrology 45, 391–403. HACKER B. R. 1990. Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman ophiolite. Journal of Geophysical Research 95, 4895–907. HACKER B. R., MOSENFELD J. L. & GNOS E. 1996. Rapid emplacement of the Oman ophiolite: Thermal and geochronological constraints. Tectonophysics 15, 1230–47. HART S. R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309, 753–7. HART S. R., BLUSZTAJN J., DICK H. J. B., MEYER P. S. & MUEHLENBACHS K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochimica et Cosmochimica Acta 63, 4059–80. HAWKINS J. W. 1995. The geology of the Lau Basin. In Taylor B. (ed.). Back-Arc Basins: Tectonics and Magmatism, pp. 63–138. Plenum Press, New York. HAWKINS J. W., BLOOMER S. H., EVANS C. A. & MELCHIOR J. T. 1984. Evolution of intra-oceanic, arc– trench systems. Tectonophysics 102, 175–205. HETZEL R., ECHTLER H. P., SEIFERT W., SCHULTE B. A. & IVANOV K. S. 1998. Subduction- and exhumationrelated fabrics in the Paleozoic high-pressure/lowtemperature Maksyutov Complex, Antingan area, southern Urals, Russia. Geological Society of America Bulletin 110, 916–30. HETZLER R. & ROMMER R. L. 2000. A moderate exhumation rate for the high pressure Maksyutov Complex, south Urals, Russia. Geological Journal 35, 327–44. JAMIESON R. A. 1986. PT path for high-temperature shear zones beneath ophiolites. Journal of Metamorphic Geology 4, 3–22. LENNYKH V. I., VALISER P. M., BEANE R., LEECH M. & ERNST W. G. 1995. Petrotectonic evolution of the Maksyutov complex, southern Urals Mountains, Russia: Implications for ultrahigh-pressure metamorphism. International Geology Review 37, 584–600. LETERRIER J., MAURY R. C., THONON P., GIRARD D. & MARCHAL M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters 59, 139–54. MACPHERSON C. G. & HALL R. 2001. Tectonic setting of Eocene boninite magmatism in the Izu Bonin Mariana forearc. Earth and Planetary Science Letters 186, 215–30. MALPAS J. 1979. The dynamothermal aureole of the Bay of Island ophiolite suite. Canadian Journal of Earth Sciences 16, 2086–101. MASLOV V. A., CHERKASOV V. L., TISCHCHENKO V. T., SMIRNOVA I. A., ARTYUSHKOVA O. V. & PAVLOV V. V. 1993. [On the stratigraphy and correlation of the Middle Paleozoic complexes of the main copper– pyritic areas of the Southern Urals.] Ufimsky Nauchno Tsentr, Ufa, Russia (in Russian). MATTE P. 1995. Southern Uralides and Variscides: Comparison of their anatomies and evolution. Geologie En Mijnbow 74, 153–68. MATTE P., MALUNSKI H., CABY R., NICOLAS A., KEPEZINSKAS P. & SOBOLEV S. 1993. Geodynamic model and 40Ar/39Ar dating for the generation and emplacement of the High Pressure (HP) metamorphic rocks SW Urals. Comptes Rendues de l’Académie des Sciences, Séries 2, 317, 1667–74. MELCHER F., GRUM W., THALHAMMER T. V. & THALHAMMER O. A. R. 1999. The giant chromite deposits of Kempirsai, Urals: Constraints from trace elements (PGE, REE) and isotope data. Mineralium Deposita 34, 250–72. NICOLAS A. & LE PICHON X. 1980. Thrusting of young oceanic lithosphere in subduction zones with special reference to structures in ophiolite peridotites. Earth and Planetary Science Letters 46, 397–406. PARKINSON I. J. & PEARCE J. A. 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577–618. PEACOCK S. M. & NORRIS P. J. 1989. Metamorphic evolution of the Central Metamorphic Belt, Klamath province, California: An inverted metamorphic gradient beneath the Trinity peridotite. Journal of Metamorphic Geology 7, 191–209. PEARCE J. A. 1993. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In Hawkesworth C. J. & Norry M. J. (eds). Continental Basalts and Mantle Xenoliths, pp. 230– 49. Shiva, Nantwich. PEARCE J. A., KEMPTON P. D., NOWELL G. M. & NOBLE R. 1999. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc–basin systems. Journal of Petrology 40, 1579–611. PEARCE J., LIPPARD S. J. & ROBERTS S. 1984. Characteristic and tectonic significance of supra-subduction zone ophiolites. In Kokelaar B. P. & Howells M. S. (eds). Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins. Geological Society of London Special Publication 16, 77–96. PEARCE J. A., VAN DER LAAN S. R., ARCULUS R. J. et al. 1992. Boninite and harzburgite from Leg 125 (Bonin–Mariana forearc): A case study of magma genesis during the initial stage of subduction. Proceedings of the Ocean Drilling Program, Scientific Results 125, 623–59. PERTSEV A. N., SPADEA P., SAVELIEVA G. N. & GAGGERO L. 1997. Nature of the transition zone in the Nurali ophiolite, Southern Urals. Tectonophysics 276, 163–80. PETROLOGICAL DATABASE OF THE OCEAN FLOOR (PetDB). 2005. Available from: http://www.petdb.org. PLANK T. & LANGMUIR C. H. 1998. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94. PUCHKOV V. N. 1997. Structure and geodynamics of the Uralian orogen. In Burg J.-P. & Ford M. (eds). Orogeny Through Time. Geological Society of London Special Publication 121, 201–36. PUCHKOV V. N. 2000. [Paleogeodynamics of the South and Central Urals.] Pauria Ufa, Russia (in Russian). RYAZANTSEV A. V., DUBININA S. V. & KURKOVSKAYA L. A. 1999. Ordovician chert–basalt complex and ophiolites of the South Urals. General and Regional Problems of Geology, pp. 5–23. GEOS, Moscow. SAVELIEV A. A., BIBIKOVA E. V., SAVELIEVA G. N., SPADEA P., PERTSEV A. N. & KIROZOVA T. I. 2001. [Garnet pyroxenite of the Mindyak massif Southern Urals: Age and environment of formation.] Bulletin MOIP, Geology 76, 23–30 (in Russian). SAVELIEV A. A. & SAVELIEVA G. N. 1991. The ophiolites of the Kempersay massif: Basic features of their structural and compositional evolution. Geotectonics 25, 498–511. SAVELIEVA G. N. 1987. [Gabbro–ultrabasite assemblages of the Urals ophiolites and their analogues in modern oceanic crust.] Nauka, Moscow (in Russian). SAVELIEVA G. N. & NESBITT R. W. 1996. A synthesis of the stratigraphy and tectonic setting of the Uralian ophiolites. Journal of the Geological Society of London 153, 525–37. SAVELIEVA G. N., SHARASKIN A., YA SAVELIEV A. A., SPADEA P. & GAGGERO L. 1997. Ophiolites of Southern Uralides adjacent to the East European Continental Margin. Tectonophysics 276, 117–37. SAVELIEVA G. N., SHARASKIN A., YA SAVELIEV A. A., SPADEA P., PERTSEV A. N. & BABARINA I. I. 2002. Ophiolites and zoned mafic–ultramafic massifs of the Urals: A comparative analysis and some tectonic implications. In Brown D., Juhlin C. & Puchkov V. (eds). Mountain Building in the Uralides: Pangea to the Present, American Geophysical Union Geophysical Monograph, 132, pp. 135–53. AGU, Washington, DC. SAVOV I., HICKEY-VARGAS R., D’ANTONIO M., RYAN J. & SPADEA P. 2005. Petrology and geochemistry of West Philippine Basin basalts and early Palau- Kyushu arc volcanic clasts from ODP Leg 195, Site 1201D: Implications for the early history of the Izu– Bonin–Mariana arc. Journal of Petrology 47, 277– 99. First published online on 31 August, 10.1093/ petrology/egi075. SCARROW J. H., SPADEA P., CORTESOGNO L., SAVELIEVA G. N. & GAGGERO L. 2000. Geochemistry of garnet metagabbros from the Mindyak ophiolite massif, Southern Urals. Ofioliti 25, 103–15. SCHIANO P., EILER J. M., HUTCHEON I. D. & STOLPER E. M. 2000. Primitive CaO-rich, silica undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochemistry Geophysics Geosystems 1, 1–33. DOI: 1999GC000032. SERAVKIN I. B. 1997. Southern Urals: Tectonomagmatic zoning and position among the Uralo- Mongolian belt. Geotectonika 1, 32–47. SHATSKY V. S., JAGOUZ E. & KOZ’MENKO O. A. 1997. [Sm–Nd dating of the high-pressure metamorphism of the Maksyutov Complex, Southern Urals.] Transactions Russian Academy of Science 353, 285–8 (in Russian). SMIRNOV S. V. 1995. Wehrlite–Clinopyroxenite–Gabbro association of Nurali Ultrabasic Massif and related Platinum ore. Dissertation, Institute of Geology and Geochemistry, Ekaterinburg. SOBOLEV A. V. & DANYUSHEVSKY L. V. 1994. Petrology and geochemistry of boninites from the north termination of the Tonga trench: Constraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology 35, 1183–211. SPADEA P., D’ANTONIO M., KOSAREV A., GOROZHANINA Y. & BROWN D. 2002. Arc–continent collision in the Southern Urals: Petrogenetic aspects of the forearc-arc complex. In Brown D., Juhlin C. & Puchkov V. (eds). Mountain Building in the Uralides: Pangea to the Present, American Geophysical Union Geophysical Monograph 132, pp. 101–34. AGU, Washington, DC. SPADEA P., KABANOVA L. YA. & SCARROW J. H. 1998. Petrology, geochemistry and geodynamic significance of Mid-Devonian boninitic rocks from the Baimak-Buribai area (Magnitogorsk Zone, Southern Urals). Ofioliti 23, 17–36. SPADEA P. & SCARROW J. H. 2000. Early Devonian boninites from the Magnitogorsk Arc, Southern Urals (Russia): Implications for early development of a collisional orogen. In Dilek Y., Moores E., Elthon D. & Nicolas A. (eds). Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program. Geological Society of America Special Paper 349, 461–72. SPADEA P., ZANETTI A. & VANNUCCI R. 2003. Mineral Chemistry of Ultramafic Massifs in the Southern Uralides Orogenic Belt (Russia) and the petrogenesis of the Lower Palaeozoic Ophiolites of the Uralian Ocean. In Dilek Y. & Robinson P. T. (eds). Ophiolites in Earth’s History. Geological Society of London Special Publication 218, 567–95. STERN R. J. 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters 226, 275–92. STERN R. J., FOUCH M. J. & KLEMPERER S. L. 2003. An overview of the Izu–Bonin–Mariana subduction factory. In Eiler J. M. (ed.). Inside the Subduction Factory. American Geophysical Union Geophysical Monograph 138, pp. 175–222. AGU, Washington, DC. TAYLOR R. N., NESBITT R. W., VIDAL P., HARMON R. S., AUVRAY B. & CROWDACE I. W. 1994. Mineralogy, chemistry and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology 35, 577–617. WAKABAYASHI J. & DILEK Y. 2000. Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. In Dilek Y., Moores E., Elthon D. & Nicolas A. (eds). Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program. Geological Society of America Special Paper 349, 53–64. WAKABAYASHI J. & DILEK Y. 2003. What constitutes ‘emplacement’ of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles. In Dilek Y. & Robinson P. T. (eds). Ophiolites in Earth’s History. Geological Society of London Special Publication 218, 427–47. WEAVER B. L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97. WILLIAMS H. & SMITH R. 1973. Metamorphic aureoles beneath ophiolite suites of Alpine peridotites: Tectonic implications with west Newfoundland examples. American Journal of Science 273, 594–621. WOODHEAD J. D., HERGT J. M., DAVIDSON J. P. & EGGINS S. M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters 192, 331–46. ZONENSHAIN L. P., KAZMIN M. L. & NATAPOV L. M. 1990. Geology of the USSR: A Plate-Tectonic Synthesis. Geodynamics Series 21, pp. 1–242. American Geophysical Union, Washington, DC. ZONENSHAIN L. P., KORINEVSKY V. G., KAZMIN V. G., PECHERSKY D. M., KHAIN V. V. & MATVEENKOV V. V. 1984. Plate tectonic model of the South Urals development. Tectonophysics 109, 95–135.en
dc.description.fulltextreserveden
dc.contributor.authorSpadea, P.en
dc.contributor.authorD'antonio, M.en
dc.contributor.departmentDipartimento di Georisorse e Territorio, Università di Udine, Via Cotonificio 114, I-33100 Udine, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Georisorse e Territorio, Università Udine, Italy.-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1062.pdf652.44 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s) 50

216
checked on Apr 17, 2024

Download(s)

28
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric