Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2262
DC FieldValueLanguage
dc.contributor.authorallBonaccorso, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGuglielmino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPalano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPuglisi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-07-03T08:30:48Zen
dc.date.available2007-07-03T08:30:48Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2262en
dc.description.abstractAfter the end of the 2002–2003 eruption, Mount Etna activity was characterized only by gentle degassing at the summit craters and some earthquake swarms. Suddenly, an eruption started on 7 September 2004 in complete absence of summit crater volcanic activity, seismicity or seismic tremor, and ground deformation. This is the first time that magma poured out passively without preeruptive and coeruptive volcanic and/or geophysical phenomena. The primary key to understanding this event is represented by the ground deformation pattern recorded through GPS measurements during the year before the eruption. The ground deformation shows inflation superimposed by a predominant eastward movement of the eastern sector at a rate never observed before in a noneruptive period. The images from satellite radar interferometry confirmed this pattern. The deformation field clearly shows that the maximum tension in the eastern sector of the volcano caused the opening of the eruptive fracture which favored the silent pouring out of already resident magma.en
dc.format.extent869388 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal Geophysical Researchen
dc.relation.ispartofseries/111 (2006)en
dc.subjectNONEen
dc.titleComposite ground deformation pattern forerunning the 2004–2005 Mount Etna eruptionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12207en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2005JB004206en
dc.relation.referencesAcocella, V., B. Behncke, M. Neri, and S. D’Amico (2003), Link between major flank slip and 2002– 2003 eruption at Mt. Etna (Italy), Geophys. Res. Lett., 30(24), 2286, doi:10.1029/2003GL018642. Aloisi, M., A. Bonaccorso, S. Gambino, M. Mattia, and G. Puglisi (2003), Etna 2002 eruption imaged from continuous tilt and GPS data, Geophys. Res. Lett., 30(23), 2214, doi:10.1029/2003GL018896. Aloisi, M., A. Bonaccorso, and S. Gambino (2006), Imaging composite dike propagation (Etna, 2002 case), J. Geophys. Res., 111, B06404, doi:10.1029/2005JB003908. Bonaccorso, A., and P. M. Davis (2004), Modeling of ground deformation associated with recent lateral eruptions: Mechanism of magma ascent and intermediate storage at Mt. Etna, in Etna Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 293–306, AGU, Washington, D. C. Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data, Geophys. Res. Lett., 29(13), 1624, doi:10.1029/ 2001GL014397. Bonforte, A., and G. Puglisi (2003), Magma uprising and flank dynamics on Mount Etna volcano, studied using GPS data (1994– 1995), J. Geophys. Res., 108(B3), 2153, doi:10.1029/2002JB001845. Bonforte, A., and G. Puglisi (2006), Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network, J. Volcanol. Geotherm. Res., 153, 357– 369. Borgia, A., L. Ferrari, and G. Pasquare` (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235. Borgia, A., R. Lanari, E. Sansosti, M. Tesauro, P. Berardino, G. Fornaro, M. Neri, and J. B. Murray (2000), Actively growing anticlines beneath Catania from distal motion ofMount Etna’s decollement measured by SAR interferometry and GPS, Geophys. Res. Lett., 27, 3409–3412. Bousquet, J. C., and G. Lanzafame (2004), The tectonics and geodynamics of Mt. Etna: Synthesis and interpretation of geological and geophysical data, in Etna Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 29– 47, AGU, Washington, D. C. Burton, M. R., et al. (2005), Etna 2004– 2005: An archetype for geodynamically- controlled effusive eruptions, Geophys. Res. Lett., 32, L09303, doi:10.1029/2005GL022527. Cervelli, P., P. Segall, K. Johnson, M. Lisowski, and A. Miklius (2002), Sudden aseismic fault slip on the south flank of Kilauea volcano, Nature, 415, 1014–1018. Corsaro, R. A., and L. Miraglia (2005), Dynamics of 2004–2005 Mt. Etna effusive eruption as inferred from petrologic monitoring, Geophys. Res. Lett., 32, L13302, doi:10.1029/2005GL022347. Dvorak, J. J., and D. Dzurisin (1997), Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents, Rev. Geophys., 35(3), 343– 384. Froger, J. L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 148, 245–258. Gambino, S., A. Mostaccio, D. Patane`, L. Scarfı`, and A. Ursino (2004), High-precision locations of the microseismicity preceding the 2002 – 2003 Mt. Etna eruption, Geophys. Res. Lett., 31, L18604, doi:10.1029/ 2004GL020499. Lo Giudice, E., and R. Rasa` (1992), Very shallow earthquakes and brittle deformations in active volcanic areas: The Etnean region as an example, Tectonophysics, 202, 257– 268. Lundgren, P., and P. A. Rosen (2003), Source model for the 2001 flank eruption of Mt. Etna volcano, Geophys. Res. Lett., 30(7), 1388, doi:10.1029/2002GL016774. Lundgren, P., P. Berardino, M. Coltelli, G. Fornaro, R. Lanari, G. Puglisi, E. Sansosti, and M. Tesauro (2003), Coupled magma chamber inflation and sector collapse slip observed with synthetic aperture radar interferometry on Mt. Etna volcano, J. Geophys. Res., 108(B5), 2247, doi:10.1029/2001JB000657. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. McTigue, D. F. (1987), Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox, J. Geophys. Res., 92, 12,931– 12,940. Mogi, K. (1958), Relation between the eruptions of various volcanoes and the deformations of the ground surface around them, Bull. Earthquake Res. Inst. Univ. Tokyo, 36, 99– 134. Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mount Etna (Italy) during the 2002– 2003 eruption, Bull. Volcanol., 66, 417– 430, doi:10.1007/s00445-003-0322-x. Nunnari, G., G. Puglisi, and F. Guglielmino (2005), Inversion of SAR data in active volcanic areas by optimization techniques, Nonlinear Processes Geophys., 12, 863–870. Okada, Y. (1985), Surface deformation due to shear and tensile fault in halfspace, Bull. Seismol. Soc. Am., 75, 1135– 1154. Owen, S., P. Segall, M. Liswoski, A. Miklius, M. Murray, M. Bevis, and J. Foster (2000a), January 30, 1997 eruptive event at Kilauea volcano, Hawaii, as monitored by continuous GPS, Geophys. Res. Lett., 27(17), 2757– 2760. Owen, S., P. Segall, M. Lisowski, A. Miklius, R. Denlinger, and M. Sako (2000b), Rapid deformation of Kilauea volcano: Global Positioning System measurements between 1990 and 1996, J. Geophys. Res., 105(B8), 18,983– 18,998. Patane`, D., P. De Gori, C. Chiarabba, and A. Bonaccorso (2003), Magma ascent and the pressurization of Mount Etna’s volcanic system, Science, 299, 2061– 2063. Patane`, D., M. Mattia, and M. Aloisi (2005), Shallow intrusive processes during 2002– 2004 and current volcanic activity on Mt. Etna, Geophys. Res. Lett., 32, L06302, doi:10.1029/2004GL021773. Puglisi, G., and A. Bonforte (2004), Dynamics of Mount Etna Volcano inferred from static and kinematic GPS measurements, J. Geophys. Res., 109, B11404, doi:10.1029/2003JB002878. Puglisi, G., P. Briole, and A. Bonforte (2004), Twelve years of ground deformation studies on Mt. Etna volcano based on GPS surveys, in Etna Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 321–341, AGU, Washington, D. C. Rasa`, R., R. Azzaro, and O. Leonardi (1996). Aseismic creep on faults and flank instability at Mt. Etna volcano, in Volcano Instability on the Earth and Other Planets, edited by W. J. McGuire, A. P. Jones, and J. Neuberg, Geol. Soc. Spec. Publ., 110, 179– 192. Rust, D., and M. Neri (1996), The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily, in Volcano Instability on the Earth and Other Planets, edited by W. J. McGuire, A. P. Jones, and J. Neuberg, Geol. Soc. Spec. Publ., 110, 193– 208. Rust, D., B. Behncke, M. Neri, and A. Ciocanel (2005), Nested zones of instability in the Mount Etna volcanic edifice, Sicily, J. Volcanol. Geotherm., 144, 137–153, doi:10.1016/j.jvolgeores.2004.11.021. Thornber, C. R., C. Heliker, D. R. Sherrod, J. P. Kauahikaua, A. Miklius, P. G. Okubo, F. A. Trusdell, J. R. Budahn, W. I. Ridley, and G. P. Meeker (2003), Kilauea east rift zone magmatism: An episode 54 perspective, J. Petrol., 44(9), 1525–1559. Tiampo, K. F., J. B. Rundle, J. Fernandez, and J. O. Langbein (2000), Spherical and ellipsoidal volcanic sources at Long Valley Caldera, California using a genetic algorithm inversion technique, J. Volcanol. Geotherm. Res., 102, 189– 206. Tiampo, K. F., J. Fernandez, G. Gentzsch, M. Charco, and J. B. Rundle (2004), Inverting for the parameters of a volcanic source using a genetic algorithm and a model for magmatic intrusion in elastic-gravitational layered Earth models, Comput. Geosci., 30(9 – 10), 985 – 1001, doi:10.1016/j.cageo.2004.07.005. Tibaldi, A., and G. Gropelli (2002), Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277– 302.en
dc.description.fulltextreserveden
dc.contributor.authorBonaccorso, A.en
dc.contributor.authorBonforte, A.en
dc.contributor.authorGuglielmino, F.en
dc.contributor.authorPalano, M.en
dc.contributor.authorPuglisi, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-4770-6006-
crisitem.author.orcid0000-0003-0435-7763-
crisitem.author.orcid0000-0003-3258-9975-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.orcid0000-0003-4503-5808-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1298.pdf849.01 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

64
checked on Feb 10, 2021

Page view(s) 50

211
checked on Apr 24, 2024

Download(s)

37
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric