Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2260
DC FieldValueLanguage
dc.contributor.authorallPetrosino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCusano, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallSaccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:29:33Zen
dc.date.available2007-07-03T08:29:33Zen
dc.date.issued2006-03en
dc.identifier.urihttp://hdl.handle.net/2122/2260en
dc.description.abstractIn this work, we infer the 1D shear-wave velocity model at Solfatara volcano using the dispersion properties of Rayleigh waves generated by artificial explosions. The groupvelocity dispersion curves are retrieved by applying the Multiple Filter Technique to single-station recordings of air-gun sea shots. Seismic signals are filtered in different frequency bands and the dispersion curves are obtained by evaluating the arrival times of the envelope maxima of the filtered signals. Fundamental and higher modes are carefully recognized and separated by using a Phase Matched Filter. The dispersion curves obtained indicate Rayleigh-wave fundamental-mode group velocities ranging from about 0.8 to 0.6 km/s over the 2-12 Hz frequency band. These group velocity dispersion curves are then inverted to infer a shallow shear-wave velocity model down to a depth of about 250 m. The shear-wave velocities thus obtained are compatible with those derived both from cross- and down-hole measurements in neighbouring wells and from laboratory experiments. These data are eventually interpreted in the light of the geological setting of the area. Using the velocity model obtained, we calculate the theoretical ground response to a vertically-incident S-wave getting two, main amplification peaks centered at frequencies of 2.2 and 5.4 Hz. The transfer function was compared to those obtained experimentally from the application of Nakamura’s technique to microtremor data, artificial explosions and local earthquakes. Agreement among the experimental and theoretical transfer functions is observed for the amplification peak of frequency 5.4 Hz.en
dc.format.extent5549532 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameOGSen
dc.relation.ispartofBollettino di Geofisica Teorica ed Applicataen
dc.relation.ispartofseries1-2/47 (2006)en
dc.subjectNONEen
dc.titleShallow shear-wave velocity structure of Solfatara volcano (Campi Flegrei, Italy),from inversion of Rayleigh-wave dispersion curvesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber89-103en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.relation.referencesAki K.; 1957: Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. Tokio Univ., 25, 415-457. Bard P.-Y. and M. Bouchon; 1980: The seismic response of sediment-filled valleys. Part 1: The case of incident SH waves. Bull. Seism. Soc. Am., 70, 1263-1286. Bettig B., Bard P.Y., Scherbaum F., Riepl J., Cotton F., Cornou C., Hatzfeld D.; 2001: Analysis of dense array noise measurements using the modified spatial autocorrelation method (SPAC). Application to the Grenoble area. Boll. Geof. Teor. Appl., 42, 15-27. Bruno P.P., Bais G., Chiodini G., Godio A., Costi F.; 2004: Geophysical study of the shallow hydrothermal system at Solfatara (Campi Flegrei; Italy). J. Geophys. Res., (submitted). Comune di Napoli; 1994: Indagini geologiche per l’adeguamento del P.R.G. alla legge regionale 07.01.1983 n. 9 in difesa del territorio dal rischio sismico. Indagini per l’applicazione della L.R. n. 9/83. Del Pezzo E., De Natale G., Scarcella G., Zollo A.; 1985: Qc of three-component seismograms of volcanic microearthquakes at Campi Flegrei volcanic area – Southern Italy. Pure Appl. Geophys., 123, 683-696. Di Vito M.A., Isaia R., Orsi G., Southon J., de Vita S., D’Antonio M., Pappalardo L., Piochi M.; 1999: Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res., 91, 221-246. Dziewonski A., Bloch S., Landisman M.; 1969: A technique for the analysis of transient seismic signanals. Bull. Seism. Soc. Am., 59, 427-444. Herrin E. and Goforth T.; 1977: Phase-matched filters: application to the study of Rayleigh waves. Bull. Seism. Soc Am., 67, 1259-1275. Herrmann R.B.; 1973: Some aspects of band-pass filtering of surface waves. Bull. Seism. Soc. Am., 63, 663-671. Herrmann R.B.; 1987: Computer Programs in Seismology. User’s manual Vol. II-IV. St. Louis University, Missouri. Hough S.E., Borcherdt R.D., Friberg P.A., Busby R., Field E., Jacobs K.H.; 1990: The role of sediment-induced amplification in the collapse of the Nimitz freeway during the October 17, 1989 Loma Prieta earthquake. Nature, 344, 853-855. Kramer S.L.; 1996: Geotechnical earthquake engineering. Prentice Hall Inc., Upper Saddle River, New Jersey. Lirer L., Pescatore T.S., Corbelli V., Di Vito M., Gattullo V., Romano A.; 1987: Geologia delle aree di Monteruscello e del centro storico di Pozzuoli. Quaderno di documentazione n.1, Ministero della Protezione Civile, Napoli. Louie J.N.; 2001: Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull. Seism. Soc. Am., 91, 347-364. Luzon F., Al Yuncha Z., Sanchez-Sesma F.J., Ortiz-Aleman C.; 2001: A numerical experiment on the horizontal to vertical spectral ratio in flat sedimentary basins. Pure Appl. Geophys., 158, 2451-2461. Malagnini L., Herrmann R.B., Biella G., de Franco R.; 1995: Rayleigh waves in Quaternary alluvium from esplosive sources: determination of shear-wave velocity and Q structure. Bull. Seism. Soc. Am., 85, 900-922. Malagnini L., Tricarico P., Rovelli A., Herrmann R.B., Opice S., Biella G., de Franco R.; 1996: Explosion, earthquake, and ambient noise recordings in a pliocene sediment-filled valley: inferences on seismic response properties by reference- and non-reference-site techniques. Bull. Seism. Soc. Am., 86, 670-682. Malischewsky P.G. and Scherbaum F.; 2004: Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion, 40, 57-67. Midzi V.; 2001: 3-D surface wave group velocity distribution in Central-Southern Africa. J. Seismology, 5, 559-574. Nakamura Y.; 1989: A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rept. Railway Tech. Res. Inst., 30, 1, 25-33. Nunziata C., Mele R., Natale M.; 1999: Shear wave velocities and primary influencing factors of Campi Flegrei- Neapolitan deposits. Engineering Geology, 54, 299-312. Orsi G., De Vita S., Di Vito M.A.; 1996: The restless resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res., 74, 179-214. Orsi G., de Vita S., Di Vito M., Isaia R., Nave R., Heiken G.; 2003: Facing volcanic and related hazards in the Neapolitan area. In: Heiken G., Fakundiny R, Sutter J. (eds), Earth Sciences in Cities, American Geophysical Union book, Washington, 56, 121-170. Petrosino S., Cusano P., Saccorotti G., Del Pezzo E.; 2002: Seismic attenuation and shallow velocity structures at Stromboli Volcano, Italy. Bull. Seism. Soc. Am., 92, 1102-1116. Saccorotti G., Chouet B., Dawson P.; 2003: Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields. Geophys. J. Int., 152, 633-648. Vanorio T., Virieux J., Zollo A., Capuano P., Russo G.; 2005: 3-D seismic tomography from P- and S- microearthquake traveltimes and rock physics characterization in the Campi Flegrei caldera. J. Geophys. Res., 110, B03201, doi:10.1029/2004JB003102. Zollo A., Judenherc S., Auger E., D’Auria L., Virieux J., Capuano P., Chiarabba C., de Franco R., Makris J., Michelini A., Musacchio G.; 2003: Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophys. Res. Lett., 30(19), 2002, doi:10.1029/2003GL018173.en
dc.description.fulltextopenen
dc.contributor.authorPetrosino, S.en
dc.contributor.authorCusano, P.en
dc.contributor.authorSaccorotti, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-5042-0244-
crisitem.author.orcid0000-0002-6266-6225-
crisitem.author.orcid0000-0003-2915-1446-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
1059.pdf5.42 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

184
checked on Apr 17, 2024

Download(s) 5

1,626
checked on Apr 17, 2024

Google ScholarTM

Check