Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2258
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:26:59Zen
dc.date.available2007-07-03T08:26:59Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2258en
dc.description.abstractThe relationship between permeability and porosity is reviewed and investigated. The classical Kozeny-Carman approach and a fractal pore-space geometry assumption are used to derive a new permeability-porosity equation. The equation contains only two fitting parameters: a Kozeny coefficient and a fractal exponent. The strongest features of the model are related to its simplicity and its capability to describe measured permeability values of different non-granular porous media better than other models.en
dc.format.extent163604 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofGEOPHYSICAL RESEARCH LETTERSen
dc.relation.ispartofseries/33 (2006)en
dc.subjectNONEen
dc.titlePermeability-porosity relationship: a reexamination of Kozeny-Carman equation based on a fractal pore-space geometry assumptionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL02318en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1029/2005GL025134en
dc.relation.referencesAvnir, D., D. Farin, and P. Pfeifer (1984), Molecular fractal surfaces, Nature, 308, 261– 263. Bayles, G., G. Klinzing, and S. Chiang (1989), Fractal mathematics applied to flow in porous systems, Part. Part. Syst. Charact., 6, 168– 175. Carman, P. (1937), Fluid flow through a granular bed, Trans. Inst. Chem. Eng., 15, 150– 167. Dullien, F. (1979), Porous Media, Fluid Transport and Pore Structure, Elsevier, New York. Katz, A., and A. Thompson (1985), Fractal sandstone pores: Implications for conductivity and pore formation, Phys. Rev. Lett., 54, 1325– 1328. Klug, C., and K. Cashman (1996), Permeability development in vesiculating magmas: Implications for fragmentation, Bull. Volcanol., 58, 87– 100. Kozeny, J. (1927), Uber kapillare Leitung der Wasser in Boden, Sitzungsber. Akad. Wiss. Wien, 136, 271– 306. Lukasiewicz, S., and J. Reed (1988), Specific permeability of porous compacts as described by a capillary model, J. Am. Ceram. Soc., 71, 1008– 10014. Mandelbrot, B. (1983), The Fractal Geometry of Nature, 3rd ed., W. H. Freeman, New York. Melnik, O., and R. Sparks (2002), Dynamics of magma ascent and lava extrusion at Soufrie´re Hills Volcano, Montserrat, in The Eruption of Soufrie´re Hills Volcano, Montserrat, From 1995 to 1999, edited by T. Druitt and B. Kokelaar, pp. 153– 171, Geol. Soc. of London, London. Mortensen, N., F. Okkels, and H. Bruus (2005), Reexamination of Hagen- Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels, Phys. Rev. E, 71, doi:10.1103/PhysRevE.71.057301. Mueller, S., O. Melnik, O. Spieler, B. Scheu, and D. Dingwell (2005), Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination, Bull. Volcanol., 67, 526–538, doi:10.1007/s00445-004-0392-4. Nigmatullin, R., L. Dissado, and N. Soutougin (1992), A fractal pore model for Archie’s law in sedimentary rocks, J. Phys. D Appl. Phys., 25, 32– 37. Orford, J., and W. Whalley (1983), The use of the fractal dimension to quantify the morphology of irregular-shaped particles, Sedimentology, 30, 655– 668. Panda, M., and W. Lake (1994), Estimation of single-phase permeability from parameters of particle-size distribution, AAPG Bull., 78, 1028 – 1039. Paterson, M. (1983), The equivalent channel model for permeability and resistivity in fluid-saturated rock—A re-appraisal, Mech. Mater., 2, 345– 352. Perrier, E., M. Rieu, G. Sposito, and G. de Marsily (1996), Models of the water retention curve for soils with a fractal pore size distribution, Water Resour. Res., 32, 3025– 3031. Rodriguez, E., F. Giacomelli, and A. Vazquez (2004), Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements, J. Compos. Mater., 38, 259– 268. Rust, A., and K. Cashman (2004), Permeability of vesicular silicic magma: Inertial and hysteresys effects, Earth Planet. Sci. Lett., 228, 93–107. Saar, M., and M. Manga (1999), Permeability-porosity relationship in vesicular basalts, Geophys. Res. Lett., 26, 111 – 114. Sreenivasan, K. (1991), Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., 23, 539–600. Turcotte, D. (1986), Fractals and fragmentation, J. Geophys. Res., 91, 1921– 1926.en
dc.description.fulltextreserveden
dc.contributor.authorCosta, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
970.pdf159.77 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

233
checked on Feb 10, 2021

Page view(s) 20

259
checked on Apr 20, 2024

Download(s) 50

66
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric