Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2250
DC FieldValueLanguage
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZaccarelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:20:16Zen
dc.date.available2007-07-03T08:20:16Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2250en
dc.description.abstractSeismic attenuation in the area of Mt. Vesuvius is reappraised by studying more than 400 S-coda envelopes of small local VT earthquakes recorded at Mt. Vesuvius from 1996 to 2002 at the three-component stations of OVO and BKE. The purpose is to obtain a stable separate estimate of intrinsic and scattering quality factors for shear waves. We investigate in the present paper four frequency bands, centered respectively at fc = 3, 6, 12 and 18 Hz with a bandwidth of 0.6fc. Stacked coda envelopes are fit to the multiple scattering model according to the Zeng approximation in the hypothesis of constant velocity half space. Results show that the diffusion regime is a good approximation as the scattering attenuation (proportional toQ−1 S , the inverse scattering-quality factor) is much stronger than the intrinsic dissipation (proportional to Q−1 I ). Q−1 S decreases with frequency while intrinsic attenuation is much less frequency-dependent. We also fit the stacked coda envelopes at BKE to the diffusion equation solved with the boundary condition of a 2 km thick diffusive layer over a homogeneous half space. Results show that the diffusivity, D, estimated in the assumption of reflecting boundary condition is greater than that estimated in the assumption of uniform half space, whereas the diffusivity estimated with the absorbing boundary condition is close to the estimate done in the assumption of half space. OVO station shows results different from those obtained at BKE and at a group of five stations located on Mt. Vesuvius for the frequency bands centered at 12 and 18 Hz. In these two bands, scattering attenuation at OVO is comparable to the intrinsic dissipation, and is much smaller than that measured at the other stations. We interpret this anomaly as due to an effect of strong lateral heterogeneity which modifies the redistribution of the seismic energy into the coda at OVO. A comparison of the results obtained using passive data (the present data set) and the active data obtained in the same area during TOMOVES experiment by Wegler (2004) show that the diffusivity estimated with shot data during TOMOVES is smaller of a factor greater than 4. This discrepancy is interpreted as due to different earth volumes sampled by the coda waves in the two cases.en
dc.format.extent1269144 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhys. Earth Planet. Int.en
dc.relation.ispartofseries/159 (2006)en
dc.subjectScatteringen
dc.subjectDiffusionen
dc.subjectSeismic attenuationen
dc.subjectMt. Vesuviusen
dc.titleSeparation of Qi and Qs from passive data at Mt. Vesuvius: A reappraisal of the seismic attenuation estimatesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber202-212en
dc.identifier.URLwww.sciencedirect.comen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1016/j.pepi.2006.07.005en
dc.relation.referencesAki, K., Chouet, B., 1975. Origin of coda waves: source, attenuation and scattering effects. J. Geophys. Res. 80, 3322–3342. Aki, K., Ferrazzini, V., 2000. Seismic monitoring and modeling of an active volcano for prediction. J. Geophys. Res. 105 (B7), 16617–16640. Bianco, F., Del Pezzo, E., Castellano, M., Ibanez, J.M., Di Luccio, F., 2002. Separation of intrinsic and scattering seismic attenuation in the southern Apennine zone, Italy. Geophys. J. Int. 150, 10–22. Bianco, F., Castellano, M., Del Pezzo, E., Ibanez, J., 1999. Attenuation of the short period seismic waves at Mt. Vesuvius, Italy. Geophys. J. Int. 138 (1), 67–76. Bianco, F., Cusano, P., Petrosino, S., Castellano, M., Buonocunto, C., Capello, M., Del Pezzo, E., 2005. Small-aperture array for seismic monitoring of Mt. Vesuvius. Seismol. Res. Lett. 76 (3), 344–355. Castellano, M., Buonocunto, C., Capello, M., La Rocca, M., 2001. Seismic surveillance of active volcanoes: the osservatorio Vesuviano Seismic Network (OVSN-Southern Italy). Seim. Res. Lett. 73 (2). Chouet, B., 2003. Volcano seismology. Pure Appl. Geophys. 160, 739–788. Friederich, C., Wegler, U., 2005. Localization of the seismic coda at Merapi volcano (Indonesia). Geophys. Res. Lett., doi:10.1029. Gasparini, P., TOMOVES Working Group, 1998. Looking inside Mt. Vesuvius. EOS 79 (19), 229–232. Hoshiba, M., Sato, H., Fehler, M., 1991. Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope—a Monte Carlo simulation of multiple isotropic scattering. Pap. Meteorol. Geophys. 42 (2), 65–91. Jin, A., Mayeda, K., Adams, D., Aki, K., 1994. Separation of intrinsic and scattering attenuation in Southern California using TERRAscope data. J. Geophys. Res. 99, 17835–17848. Lomax, A., Virieux, J., Volant, P., Berge, C., 2000. Introduction of a Metropolis–Gibbs method and comparison with linear locations. In: Thurber, C., Kissling, E., Rabinowitz, N. (Eds.), Advances in Seismic Event Location. Kluwer, Amsterdam. Margerin, L., Campillo, M., Bart vanTiggelen, 1998. Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q. Geophys. J. Int. 134, 596–612. Matsunami, K., Nakamura, M., 2004. Seismic attenuation in a non volcanic swarm region beneath Wakayama, southwest Japan. J. Geophys. Res. 109, B09302, doi:10.1029/2003JB002758. Ryzhik, L.V., Papanicolaou, G.C., Keller, J.B., 1996. Transport equation for elastic and other waves in random media. Wave Motion 24, 327–370. Sato, H., Fehler,M.C., 1998. SeismicWave Propagation and Scattering in the Heterogeneous Earth. Springer-Verlag, New York. Scarpa, R., Tronca, F., Bianco, F., Del Pezzo, E., 2002. High resolution velocity structure beneath MountVesuvius from seismic array. Geophys. Re. Lett. 29 (21), 2040. Van Tiggelen, B.A., 1999. Localization ofwaves. In: Fouque, J.P. (Ed.), Diffuse Waves in Complex Media. Kluwer Academic Publisher, Dortrecht, The Netherlands, pp. 1–60. Weaver, R.L., 1994. Anderson localization in time domain: numerical studies of waves in two dimensional disordered media. Phys. Rev. B 49 (9), 5881–5895. Wegler, U., Luhr, B.G., 2001. Scattering behaviour at Merapi Volcano, Java revealed from an active seismic experiment. Geophys. J. Int. 145, 579–592. Wegler, U., 2004. Diffusion of seismic waves in a thick layer: theory and application to Vesuvius volcano. J. Geophys. Res. 109, B07303, doi:10.1029/2004JB003048. Wennerberg, L., 1993. Multiple scattering interpretation of coda-Q measurements. Bull. Seismol. Soc. Am. 83, 279–290. Wu, R.S., 1985. Multiple scattering and energy transfer of seismic waves—separation of scattering effects from intrinsic attenuation. I. Theoretical modeling. Geophys. J. R. Astron. Soc. 82, 57–80. Zeng, Y., 1991. Compact solutions for multiple scattered wave energy in time domain. Bull. Seimol. Soc. Am. 81, 1022–1029.en
dc.description.fulltextreserveden
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorBianco, F.en
dc.contributor.authorZaccarelli, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.orcid0000-0002-4053-7625-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1011.pdf1.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

27
checked on Feb 10, 2021

Page view(s)

128
checked on Apr 20, 2024

Download(s)

24
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric