Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2241
DC FieldValueLanguage
dc.contributor.authorallDi Matteo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMangiacapra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDingwell, D. B.; Department of Earth and Environmental Science, University of Munich, Theresienstr. 41/III 80333 München, Germanyen
dc.contributor.authorallOrsi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T08:07:36Zen
dc.date.available2007-07-03T08:07:36Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2241en
dc.description.abstractWe report new data on water solubility in two melt compositions representative of volcanic units of the Campi Flegrei Caldera (Italy). The first composition is a primitive shoshonite and the second one is a more evolved latitic composition that have been chosen because of their less evolved nature compared to the other erupted products of Campi Flegrei. Water solubility was investigated at pressures from 25 to 200 MPa and 1200 °C following synthesis in an Internal Heated Pressure Vessel (IHPV). The glasses obtained from water-saturated experiments were analysed using both Fourier Transform Infra Red spectroscopy (FTIR) and Karl Fischer Titration (KFT). KFT was used as an independent method to obtain water concentration for the calibration of molar absorptivities of infrared bands at ∼3550 cm−1 (total water), ∼4500 cm−1 (hydroxyl groups) and ∼5200 cm−1 (molecular water). Water solubility in the shoshonitic melts is similar to that of a basalt while a slightly higher water solubility is observed for the latitic composition. As regards the speciation, we have investigated the water speciation for the shoshonitic composition only and we have made a comparison between the data resulting using different molar absorptivities obtained for basaltic compositions similar to our shoshonite.en
dc.format.extent387108 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries1-2/229 (2006)en
dc.subjectWater solubilityen
dc.subjectShoshonitic meltsen
dc.subjectLatitic meltsen
dc.subjectFTIRen
dc.subjectMolar absorptivityen
dc.subjectWater speciationen
dc.titleWater solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber113–124en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1016/j.chemgeo.2006.01.015en
dc.relation.referencesBartholomew, R.F., Butler, B.L., Hoover, H.L., Wu, C.K., 1980. Infrared spectra of a water containing glass. J. Am. Ceram. Soc. 63, 481–485. Behrens, H., 1995. Determination of water solubities in high-viscosity melts: an experimental study on NaAlSi3O8. Eur. J. Mineral. 7, 905–920. Behrens, H., Jantos, N., 2001. The effect of anhydrous composition on water solubility in granitic melts. Am. Mineral. 86, 14–20. Behrens, H., Nowak, M., 2003. Quantification of H2O speciation in silicate glasses and melts by IR spectroscopy—in situ versus quench techniques. Phase Transit. 76 (1–2), 45–61. Behrens, H., Stuke, A., 2003. Quantification of H2O contents in silicate glasses using IR spectroscopy—a calibration based on hydrous glasses analyzed by Karl–Fischer titration. Glass Sci. Technol. 76, 176–189. Blank, J.G., Stolper, E.M., Carroll, M.R., 1993. Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth Planet. Sci. Lett. 119, 27–36. Burnham, C.W., 1974. NaAlSi3O8–H2O solutions: a thermodynamic model for hydrous magmas. Bull. Soc. Fr. Mineral. Cristallogr. 97, 223–230. Burnham, C.W., 1975.Water and magmas: a mixing model. Geochim. Cosmochim. Acta 39, 1077–1084. Burnham, C.W., Davis, N.F., 1971. The role of H2O in silicate melts: I. PVT reltions in the system NaAlSi3O8–H2O to 10 kilobars and 1000 °C. Am. J. Sci. 270, 54–79. Burnham, C.W., Davis, N.F., 1974. The role of H2O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3O8– H2O to 10 kbars 700 °C–1100 °C. Am. J. Sci. 274, 902–940. Carroll, M.R., Blank, J.G., 1997. The solubility of H2O in phonolitic melts. Am. Mineral. 82, 1111–1115. Cecchetti, A., Marianelli, P., Sbrana, A., 2001. A deep magma chamber beneath Campi Flegrei? Insights from melt inclusions. GNVFramework Program 2000–2002: 1 year results. Oss. Vesuv. 59–65. D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., et al., 1999. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 247–268. Dingwell, D.B., Webb, S.L., 1990. Relaxation in silicate melts. Eur. J. Mineral. 2, 427–449. Dingwell, D.B., Harris, D.M., Scarfe, C.M., 1984. The solubility of H2O in melts in the system SiO2–Al2O3–Na2O–K2O at 1 to 2 kbars. J. Geol. 92, 387–395. Dingwell, D.B., Romano, C., Hess, K.U., 1996. The effect of water on viscosity of a haplogranitic melt at P–T–X conditions relevant to silicic volcanism. Contrib. Mineral. Petrol. 124, 19–28. Dingwell, D.B., Holtz, F., Bherens, H., 1997. The solubility of H2O in peralkaline and peraluminous melts. Am. Mineral. 82, 434–437. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., et al., 1999. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 221–246. Dixon, T.E., Stolper, E., Holloway, J.R., 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean basalt liquids: Part I. Calibration and solubility models. J. Petrol. 36, 1607–1631. Eggler, D.H., 1972. Water-saturated and water-undersaturated melting relations in a Paricutin andesite and an estimate of water content in natural magma. Contrib. Mineral. Petrol. 34, 261–271. Gaillard, F., Scaillet, M.B., Pichavant, M., Bény, J.M., 2001. The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem. Geol. 174, 255–273. Goranson, R.W., 1931. The solubility of water in granitics magmas. Am. J. Sci. 22, 481–502. Goranson, R.W., 1936. Silicate–water systems: the solubility of water in albite-melt. Trans.-Am. Geophys. Union 17, 257–259. Hamilton, D.L., Burnham, C.W., Osborn, E.F., 1964. The solubility of water and effects on fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21–39. Holtz, F., Behrens, H., Dingwell, D.B., Taylor, R.P., 1992. Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chem. Geol. 96, 289–302. Holtz, F., Behrens, H., Dingwell, D.B., Wilhelm, J., 1995. H2O solubility in haplogranitic melts: compositional, pressure and temperature dependence. Am. Mineral. 80, 94–108. Keppler, H., Bagdassarov, N.S., 1993. High-temperature FTIR spectra of H2O in rhyolite melt to 1300 °C. Am. Mineral. 78, 1324–1327. Kohn, S.C., Dupree, R., Golam Mortuza, M., 1992. The interaction between water and aluminosilicate magmas. Chem. Geol. 96, 399–409. Kushiro, I., 1972. Effect of water on the composition of magmas formed at high pressures. Am. J. Sci. 267A, 269–294. Kushiro, I., 1978. Density and viscosity of hydrous calc-alkalic andesite magma at high pressure. Year B.-Carnegie Inst.Wash. 77, 675–678. Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaOMgO- FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51 (11), 2931–2946. Lebedev, E.E., Khitarov, N.I., 1964. The dependence of electrical conductivity of granite melt and the beginning of granite melting on high pressure of water. Geokhimiya 3, 195–201 (in Russian). McMillan, P.F., 1994. Water solubility and speciation models. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Rev. Miner., vol. 30, p. 517. Moore, G., Vennemann, T., Carmichael, I.S.E., 1995. Solubility of water in magmas to 2 kilobars. Geology 23, 1099–1102. Moore, G., Vennemann, T., Carmichael, I.S.E., 1998. An empirical model for the solubility of H2O in magmas to 3 kilobars. Am. Mineral. 83, 36–42. Newman, S., Stolper, E.M., Epstein, S., 1986. Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am. Mineral. 71, 1527–1541. Nowak, M., Berhens, H., 1995. The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy. Am. Mineral. 59 (16), 3445–3450. Nowak, M., Berhens, H., 2001. Water in rhyolitic magmas: getting a grip on a slippery problem. Earth Planet. Sci. Lett. 184, 515–522. Nowak, M., Berhens, H., Johannes, W., 1996. A new type of hightemperature, high pressure cell for spectroscopic studies of hydrous silicate melts. Am. Mineral. 81, 1507–1512. Ohlhorst, S., Behrens, H., Holtz, F., 2001. Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem. Geol. 174, 5–20. Orlova, G.P., 1962. The solubility of water in albite melts. Int. Geol. Rev. 6 (1964), 254–258. Osborn, E.F., 1959. The role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 609–647. Ostroviskiy, I.A., Orlova, G.P., Rudnitskaya, Y.S., 1964. Stoichiometry in the solution of water in alkali-aluminosilicate melts. Dokl. Akad. Nauk SSR 157, 149–151. Papale, P., 1997. Thermodynamic modeling of the solubility of H2O and CO2 in silicate liquids. Contrib. Mineral. Petrol. 126, 237–251. Pappalardo, L., Piochi, M., D'Antonio, M., Civetta, L., Petrini, R., 2002. Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J. Petrol. 43 (8), 1415–1434. Richet, P., Lejeune, A.M., Holtz, F., Roux, J., 1996. Water and the viscosity of andesite melts. Chem. Geol. 128, 185–197. Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlhorst, S.,Wilke, M., 2000. Water and the density of silicate glasses. Contrib. Mineral. Petrol. 138, 337–347. Rosi, M., Sbrana, A., 1987. Phlegrean fields. CNR, Quad. Ric. Sci. 114, 1–175. Rossman, G.R., 1988. Optical spectroscopy. In: Hatworne, F.C. (Ed.), Spectroscopic methods in Mineralogy and Geology. Rev. Mineral., vol. 18, pp. 207–243. Schmidt, B.C., Riemer, T., Kohn, S.C., Behrens, H., Dupree, R., 2000. Different water solubility mechanism in hydrous glasses along the Qz–Ab join: evidence from NMR spectroscopy. Geochim. Cosmochim. Acta 64 (3), 513–526. Schmidt, B.C., Riemer, T., Kohn, S.C., Holtz, F., Dupree, R., 2001. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect. Geochim. Cosmochim. Acta 65 (17), 2949–2964. Scholze, H., 1960. Zur Frage der Unterscheidung zwischen H2OMolekelen und OH-Gruppen in Gläsern und Mineralen. Naturwissenschaften 47, 226–227. Shen, A., Keppler, H., 1995. Infrared spectroscopy of hydrous silicate melts to 1000 °C and 10 kbar—direct observation of H2O speciation in a diamond-anvil cell. Am. Mineral. 80, 1335–1338. Silver, L.A., Ihinger, P.D., Stolper, E., 1990. The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162. Stolper, E., 1982a. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620. Stolper, E., 1982b. Water in silicate glasses: an infrared spectroscopy study. Contrib. Mineral. Petrol. 81, 1–17. Tamic, N., Behrens, H., Holtz, F., 2001. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem. Geol. 174, 333–347. Watson, E.B., 1994. Diffusion in volatile-bearing magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Rev. Miner., vol. 30, pp. 371–411. Whiters, A.C., Zhang, Y., Behrens, H., 1999. Reconciliation of experimental results on H2O speciation in rhyolitic glass using insitu and quenching techniques. Earth Planet. Sci. Lett. 173, 343–349. Yamashita, S., Kitamura, T., Kusakabe, M., 1997. Infrared spectroscopy of hydrous glasses of arc magma composition. Geochem. J. 31, 169–174. Yoder Jr., H.S., 1969. Calc-alkalic andesites: experimental data bearing on the origin of their assumed characteristics. In: McBirney, A.R. (Ed.), Proceedings of the Andesite Conference. Or. Dep. Geol. Miner. Ind. Bull., vol. 65, pp. 77–89. Yoder Jr., H.S., 1973. Contemporaneous basaltic and rhyolitic magmas. Am. Mineral. 58, 153–171. Zeng, Q., Nekvasil, H., Grey, C.P., 2000. In support of a depolymerization model for water in sodium aluminosilicate glasses: information from NMR spectroscopy. Geochim. Cosmochim. Acta 64 (5), 883–896. Zhang, Y., 1999. H2O in rhyolitic glasses and melts: measurement, speciation, solubility and diffusion. Rev. Geophys. 37, 493–516. Zhang, Y., Stolper, E.M., Ihinger, P.D., 1995. Kinetics of the reaction H2O+O=2OH in rhyolitic and albitic glasses: preliminary study. Am. Mineral. 80, 593–612.en
dc.description.fulltextreserveden
dc.contributor.authorDi Matteo, V.en
dc.contributor.authorMangiacapra, A.en
dc.contributor.authorDingwell, D. B.en
dc.contributor.authorOrsi, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth and Environmental Science, University of Munich, Theresienstr. 41/III 80333 München, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8393-923X-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
683.pdf378.04 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s) 50

217
checked on Apr 17, 2024

Download(s)

39
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric