Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2240
DC FieldValueLanguage
dc.contributor.authorallAndò, B.; Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita` di Cataniaen
dc.contributor.authorallPecora, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-07-03T08:06:44Zen
dc.date.available2007-07-03T08:06:44Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2240en
dc.description.abstractVideo surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.en
dc.format.extent483034 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofComputers & Geosciencesen
dc.relation.ispartofseries/32 (2006)en
dc.subjectVolcano monitoringen
dc.subjectImage processingen
dc.subjectSmart storing rateen
dc.subjectEruption dataen
dc.titleAn advanced video-based system for monitoring active volcanoesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber85-91en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1016/j.cageo.2005.05.004en
dc.relation.referencesAndo` , B., Carbone, D., 2001. A methodology for reducing a continuously recording gravity meter for the effect of meteorological parameters. IEEE Transactions on Instrumentation and Measurements 50 (5), 1248–1254. Ando` , B., Coltelli, M., Sambataro, M., 2004. A measurement tool for investigating cooling lava properties. IEEE Transactions on Instrumentation and Measurements 53 (2), 507–513. Bertucco, L., Coltelli, M., Nunnari, G., Occhipinti, L., 1999. Cellular neural networks for real-time monitoring of volcanic activity. Computers & Geosciences 25 (2), 101–117. Bruno, N., Caltabiano, T., Giammanco, S., Romano, R., 2001. Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma. Journal of Volcanology and Geothermal Research 110, 137–153. Budetta, G., Carbone, D., Greco, F., 1999. Subsurface mass redistributions at Mount Etna (Italy) during the 1995–96 explosive activity detected by microgravity studies. Geophysical Journal International 138, 77–88. Coltelli, M., 1997. Video stations network of the Sicilian active volcanoes: a tool to improve the surveillance of the eruptive activity. In: IAVCEI-General Assembly, Book. Puerto Vallarta, Mexico, 88pp. Del Negro, C., Napoli, R., Sicali, A., 2002. Automated system for magnetic monitoring of active volcanoes. Bulletin of Volcanology 64, 94–99. Doebelin, E.O., 1985. Measurement Systems, third ed. McGraw-Hill, New York, NY. Fortuna, L., Graziani, S., Lo Presti, M., Nunnari, G., 1991. A neural network for seismic events classification. In: Proceedings IEEE IGARSS’91, Helsinki, Finland, pp. 1663–1665. Hunter, G., Pinkerton, H., Airey, R., Calvari, S., 2003. The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna. Journal of Volcanology and Geothermal Research 123 (1/2), 203–210. Kinoshita, K., 1996. Observation of flow and dispersion of volcanic clouds from Mt. Sakurajima. Atmospheric Environment 30 (16), 2831–2837. Lanari, R., Lundgren, P., Sansosti, E., 1998. Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophysical Research Letters 25 (10), 1541. Massonet, D., Briole, P., Arnaud, A., 1995. Deflation of Mt. Etna monitored by spaceborne radar interferometry. Nature 375 (6532), 567–570. McGuire, B., Kilburn, C.R.J., Murray, J. (Eds.), 1995. Monitoring Active Volcanoes. UCL Press, London 421pp. Muscato, G., 2000. ROBOVOLC: a robot for volcano exploration, a new European project arising from the CLAWAR network. CLAWAR News. The Newsletter of the EC Brite Euram Thematic Network for Climbing and Walking Robots 9, 5. Patane` , D., Cocina, O., Falsaperla, S., Privitera, E., Spampanato, S., 2004. Mt. Etna volcano: a seismological framework. In: Calvari, S., Bonaccorso, A., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Etna Volcano Laboratory, Geophysical Monograph Series. Puglisi, G., Briole, P., Bonforte, A., 2004. Twelve years of ground deformation studies on Mt. Etna volcano based on GPS surveys. In: Calvari, S., Bonaccorso, A., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Etna Volcano Laboratory, Geophysical Monograph Series. Russ, J.C., 1995. The Image Processing Handbook, second ed. CRC Press, Boca Raton, FL. Warburton, R.J., Goodkind, J.M., 1997. The influence of barometric-pressure variations on gravity. Geophysical Journal of the Royal Astronomical Society 48, 281–292. William, C.A., Wadge, G., 1998. The effects of topography on magma chamber deformation models: application to Mt. Etna and radar interferometry. Geophysical Research Letters 25 (10), 1549.en
dc.description.fulltextreserveden
dc.contributor.authorAndò, B.en
dc.contributor.authorPecora, E.en
dc.contributor.departmentDipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita` di Cataniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-5171-9504-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
570.pdf471.71 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

29
checked on Feb 7, 2021

Page view(s) 50

206
checked on Mar 27, 2024

Download(s)

43
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric