Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2222
DC FieldValueLanguage
dc.contributor.authorallAndò, B.; DEES, University of Catania, V.le A.Doria 6, 95125 Catania, Italyen
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-07-03T07:49:48Zen
dc.date.available2007-07-03T07:49:48Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2222en
dc.description.abstractThe experience of several authors has shown that continuous measurements of the gravity field, accomplished through spring devices, are strongly affected by changes of the ambient temperature. The apparent, temperature-driven, gravity changes can be up to one order of magnitude higher than the expected changes of the gravity field. Since these effects are frequency-dependent and instrument-related, they must be removed through non-linear techniques and in a case-by-case fashion. Past studies have demonstrated the effectiveness of a Neuro-Fuzzy algorithm as a tool to reduce continuous gravity sequences for the effect of external temperature changes. In the present work, an upgraded version of this previously employed algorithm is tested against the signal from a gravimeter, which was installed in two different sites over consecutive 96-day and 163-day periods. The better performance of the new algorithm with respect to the previous one is proven. Besides, inferences about the site and/or seasonal dependence of the model structure are reported.en
dc.format.extent1253604 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries/159 (2006)en
dc.subjectGravimetersen
dc.subjectExogenous parameter compensantionen
dc.subjectNeuro-Fuzzy algorithmen
dc.subjectSite effectsen
dc.titleA new computational approach to reduce the signal from continuously recording gravimeters for the effect of atmospheric temperatureen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber247–256en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.identifier.doi10.1016/j.pepi.2006.07.009en
dc.relation.referencesAnd`o, B., Carbone, D., 2001. A methodology for reducing a continuously recording gravity meter for the effect of meteorological parameters. IEEE Trans. Instrum. Meas. 50 (5), 1248–1254. And`o, B., Carbone, D., 2004. A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters. Phys. Earth Planet. Int. 142, 37–47. And`o, B., Carbone, D., 2006.Acompensation strategy to reduce spring gravimeter output for the effect of temperature: experimental validation. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Sorrento, Italy, pp. 2327–2331. Caracausi, A., Ditta, M., Italiano, F., Longo, M., Nuccio, P.M., Paonita, A., 2005. Massive submarine gas output during the volcanic unrest off Panarea Island (Aeolian arc, Italy): inferences for explosive conditions. Geochem. J. 39 (5), 459–467. Carbone, D., Budetta, G., Greco, F., 2003a. Bulk processes some months before the start of the 2001 Mt. Etna eruption, evidenced through microgravity studies. J. Geophys. Res. 108 (B12), 2556, doi:10.1029/2003JB002542. Carbone, D., Budetta, G., Greco, F., Rymer, H., 2003b. Combined discrete and continuous gravity observations at Mt. Etna. J. Volcanol. Geotherm. Res. 123, 123–135. Dehant, V., 1987. Tidal parameters for an inelastic Earth. Phys. Earth Planet. Int. 49, 97–116. Eggers, A.A., 1983. Temporal gravity and elevation changes at Pacaya volcano, Guatemala. J. Volcanol. Geotherm. Res. 19, 223– 237. El Wahabi, A., Dittfeld, H.J., Simon, Z., 2000. Meteorological influence on tidal gravimeter drift. Bull. Inform. Mar´ees Terrestres 133, 10403–10414. El Wahabi, A., Ducarme, B., Van Ruymbeke, M., d’Orey`e, N., Somerhausen, A., 1997. Continuous gravity observations at Mount Etna (Sicily) and correlations between temperature and gravimetric records. Cah. Centre Eur. G´eodyn. S´eismol. 14, 105–119. Harris, A.J.L., Stevenson, D.S., 1997. Magma budgets and steady state activity of Vulcano and Stromboli. Geophys. Res. Lett. 24 (9), 1043–1046. Jachens, R.C., Eaton, G.P., 1980. Geophysical observations of Kilauea volcano, Hawaii. 1: Temporal gravity variations related to the 29 November 1975, M= 7.2 earthquake and associated summit collapse. J. Volcanol. Geotherm. Res. 7, 225–240. Jousset, P., Dwipa, S., Beauducel, F., Duquesnoy, T., Diament, M., 2000. Temporal gravity at Merapi during the 1993–1995 crisis: an insight into the dynamical behaviour of volcanoes. J. Volcanol. Geotherm. Res. 100, 289–320. LaCoste, Romber, 1997. General Catalog. Austin, TX, USA. Ljung, L., 1987. System Identification: Theory for the User. Prentice Hall, Englewood Cliffs, NY, 609 pp. Merriam, J.B., 1992. Atmospheric pressure and gravity. Geoph. J. Int. 109, 488–500. Niebauer, T.M., 1988. Correcting gravity measurements for the effect of local air pressure. J. Geoph. Res. 93, 7989–7991. Papoulis, A., 1991. Probability, Random Variables and Stochastic Processes, 3rd ed. McGraw-Hill, NY. Rymer, H., Brown, G.C., 1987. Causes of microgravity change at Poa’s volcano, Costa Rica: an active but non-erupting system. Bull. Volcanol. 49, 389–398. Rymer, H., Murray, J.B., Brown, G.C., Ferrucci, F., McGuire, J., 1993. Mechanisms of magma eruption and emplacement at Mt. Etna between 1989 and 1992. Nature 361, 439–441. Sanderson, T.J.O., 1982. Direct gravimetric detection of magma movements at Mount Etna. Nature 297, 487–490. Spratt, R.S., 1982. Modelling the effect of atmospheric pressure variations on gravity. Geoph. J. R. Astron. Soc. 71, 173–186. Tamura, Y., 1987. A harmonic development of the tide-generating potential. Bull. Inform. Mar´ees Terrestres 99, 6813–6855. Torge, W., 1989. Gravimetry. Walter de Gruyter, NY, 465 pp. Welch, P.D., 1967. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio & Electroacoust. AU. 15, 70–73. Wenzel, H.G., 1996. The nanogal software: Earth tide data processing package ETERNA 3.30. Bull. Inform. Mar´ees Terrestres 124, 9425–9439.en
dc.description.fulltextreserveden
dc.contributor.authorAndò, B.en
dc.contributor.authorCarbone, D.en
dc.contributor.departmentDEES, University of Catania, V.le A.Doria 6, 95125 Catania, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
953.pdf1.22 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

8
checked on Feb 10, 2021

Page view(s)

109
checked on Apr 20, 2024

Download(s)

23
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric