Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2193
DC FieldValueLanguage
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T07:01:56Zen
dc.date.available2007-07-03T07:01:56Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2193en
dc.description.abstractCompositional, textural and experimental data on products from explosive and effusive eruptions of Neapolitan volcanoes (Campi Flegrei and Somma-Vesuvio) allow us to constrain degassing and fragmentation conditions during eruptions of alkaline magmas. Significant differences in compositional and textural features have been recognized between lavas, scoria and pumice resulting respectively from effusive, moderately and extremely explosive eruptions. Pumice samples have highly-vesicular glassy matrix, low microlite number density and moderate to high water content. Crystal Size Distributions (CSD) are steep with high intercept values; the narrow microlite size range indicates single nucleation event. Scoria products are characterized by moderate vesicularity and water content. They have high number density of microlites which are bimodal in size. CSD show distinct inflections that are explained as two crystal populations growing in distinct time. Lava samples generally have low vesicularities, moderate to high microcrystalline groundmass and low glass water content. The comparison between textural and compositional features of natural rocks with samples obtained by decompression experiments allows us to conclude that degassing processes during magma ascent occurs in near-equilibrium conditions even at high decompression rate. Moderate to long magma rise times, calculated in the order of a few days, produce opendegassing responsible formoderately explosive to effusive activity. Shortmagma rise times, calculated in the order of a fewhours, result in closed-system degassing that allow explosive fragmentation when the volume of growing bubble reaches a fixed threshold. Vesicularity and water content measured on matrix glass of pumice indicate that this process occurs at pressure of 10–30 MPa. In these conditions, degassing, fragmentation and in turn the eruptive style is strongly influenced by initial conditions in themagma chamber (volatile content, temperature, pressure) instead of decompression rate, in contrast with that observed for rhyolitic melts. These differences have important consequences in terms of volcanic hazards and risk. The low-viscosity alkaline magma is able tomaintain efficient degassing even during the final stage of magma ascent, favoring, in the case of closed-system, fragmentation and explosive activity.en
dc.format.extent1319445 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/250 (2006)en
dc.subjectCampi Flegrei and Somma-Vesuvioen
dc.subjectexplosive eruptionsen
dc.subjectvesiculationen
dc.subjectcrystallizationen
dc.subjectdegassingen
dc.titleMagma degassing and crystallization processes during eruptions of high-risk Neapolitan-volcanoes: Evidence of common equilibrium rising processes in alkaline magmasen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber164-181en
dc.identifier.URLwww.siencedirect.comen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/j.epsl.2006.07.040en
dc.relation.references[1] C.H. Geschwind, M.J. Rutherford, Crystallization of microlites during magma ascent: the fluid mechanism of 1980–1986 eruption at Mount St Helens, Bull. Volcanol. 57 (1995) 356–370. [2] J. Gardner, M. Hilton, M.R. Carroll, Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure, Earth Planet. Sci. Lett. 168 (1999) 201–218. [3] M.T. Mangan, L.G. Mastin, T. Sisson, Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling, J. Volcanol Geotherm. Res. 129 (2004) 23–36. [4] M.T. Mangan, T. Sisson, Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism, Earth Planet. Sci. Lett. 183 (2000) 441–455. [5] C.C. Mourtada-Bonnefoi, D. Laporte, Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate, Earth Planet. Sci. Lett. 218 (2004) 521–537. [6] J.E. Hammer, M.J. Rutherford, Magma storage prior to the 1912 eruption at Novarupta, Alaska, Contrib. Mineral. Petrol. 144 (2002) 144–162. [7] S. Couch, C.L. Harford, R.S.J. Sparks, M.R. Carroll, Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufriere Hills Volcano, Montserrat, J. Petrol. 44 (2003) 1455–1475. [8] S. Couch, R.S.J. Sparks, M.R. Carroll, The kinetics of degassinginduced crystallization at Soufriere Hills Volcano, Montserrat, J. Petrol. 44 (2003) 1477–1502. [9] J. Larsen, J. Gardner, Experimental study of water degassing from phonolite melts: implications for volatile oversaturation during magmatic ascent, J. Volcanol. Geotherm. Res. 134 (2004) 109–124. [10] A. Proussevitch, Sahagian, Bubbledrive-1: a numerical model of volcanic eruption mechanisms driven by disequilibrium magma degassing, J. Volcanol. Geotherm. Res. 143 (2005) 89–111. [11] O. Melnik, A.A. Barmin, R.S.J. Sparks, Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma, J. Volcanol. Geotherm. Res. 143 (2005) 53–68. [12] G. Mastrolorenzo, L. Brachi, A. Canzanella, Vesicularity of various types of pyroclastic deposits of Campi Flegrei volcanic field: evidence of analogies in magma rise and vesiculation mechanisms, J. Volcanol. Geotherm. Res. 109 (2001) 41–53. [13] M. Piochi, G. Mastrolorenzo, L. Pappalardo, Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Bull. Volcanol 67 (2005) 663–678. [14] B. De Vivo, G. Rolandi, P.B. Gans, A. Calvert,W.A. Bohrson, F.J. Spera, H.E. Belkin, New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy),Mineral. Petrol. 73 (2001) 47–65. [15] D. Brocchini, C. Principe, D. Castradori, M.A. Laurenzi, L. Gorla, Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well, Mineral. Petrol. 73 (2001) 67–91. [16] A.L. Deino, G. Orsi, S. de Vita, M. Piochi, The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method, J. Volcanol. Geotherm. Res. 133 (2004) 157–170. [17] L. Pappalardo, M. Piochi, M. D'Antonio, L. Civetta, R. Petrini, Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data, J. Petrol. 43 (2002) 1415–1434. [18] G. De Astis, L. Pappalardo, M. Piochi, Procida Volcanic History: new insights into the evolution of the Phlegraean Volcanic District (Campania region, Italy), Bull. Volcanol. 66 (2004) 622–641. [19] L. Pappalardo, M. Piochi, G. Mastrolorenzo, The 3800 yr BP– 1944 AD magma plumbing system of Somma-Vesuvius: constraints on its behavior and present state through a review of isotope data, Ann. Geophys. 47 (2004) 1471–1483. [20] G.DeNatale,C. Troise, F. Pingue,G.Mastrolorenzo, L. Pappalardo, The Somma-VesuviusVolcano (Southern Italy): structure, dynamics and hazard evaluation, Earth Sci. Rev. 74 (2006) 73–111. [21] K. Wohletz, G. Orsi, S. de Vita, Eruptive mechanism of the NeapolitanYellow Tuff interpreted from stratigraphic, chemical and granulometric data, J. Volcanol. Getherm. Res. 67 (1995) 263–290. [22] A. Neri, P. Papale, D. Del Seppia, R. Santacroce, Coupled conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius, J. Volcanol. Geotherm. Res. 120 (2003) 141–160. [23] G. Mastrolorenzo, Averno tuff ring in Campi Flegrei (south Italy), Bull. Volcanol. 54 (1994) 561–570. [24] E. Stopler, Water in silicate glasses: an infrared spectroscopy study, Contrib. Mineral. Petrol. 81 (1982) 1–17. [25] M.R. Carroll, J. Blank, Solubility of water in phonolitic melts, Am. Mineral. 82 (1997) 1111–1115. [26] M.S. Ghiorso, R.O. Sack, Chemical Mass Transfer in Magmatic Processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol. 119 (1995) 197–212. [27] B.F. Houghton, C.J.N. Wilson, A vesicularity index for pyroclastic deposits, Bull. Volcanol. 51 (1989) 451–462. [28] M.D. Higgins, Measurements of crystal size distributions, Am. Mineral. 85 (2000) 1105–1116. [29] M.D. Higgins, Closure in crystal size distributions (CSD), verification of CSD calculations and the significance of CSD fans, Am. Mineral. 87 (2002) 171–175. [30] M.J. Le Bas, R.W. Le Maitre, A. Streckeisen, B. Zanettin, A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol. 27 (1986) 745–750. [31] J.E. Hammer, K.V. Cashman, R.P. Hoblit, S. Newman, Degassing and microlite crystallization during pre-climatic events of the 1991 eruption of Mt. Pinatubo, Philippines, Bull. Volcanol. 60 (1999) 355–380. [32] C. Martel, J.-L. Bourdier, M. Pichavant, H. Traineau, Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions at Mount Pelee volcano (Martinique, Lesser Antilees arc), J. Volcanol. Geotherm. Res. 96 (2000) 191–206. [33] S. Noguchi, A. Toramaru, T. Stimano, Crystallization of microlites and degassing during magma ascent: constraints on the fluid mechanical behavior ofmagma during the Tenjo Eruption on Kozu Island, Japan, Bull. Volcanol. 68 (2006) 432–449. [34] M. de'Gennaro,A. Incoronato,G.Mastrolorenzo,M.R.Adabbo,G. Spina, Depositionalmechanisms and alteration processes in different types of pyroclastic deposits in Campi Flegrei volcanic field (Southern Italy), J. Volcanol. Geotherm. Res. 82 (1999) 113–137. [35] C. Klug, K.V. Cashman, Vesiculation of May 18, 1980 Mount St. Helens magma, Geology 22 (1994) 468–472. [36] B.D. Marsh, Crystal size distribution (CSD) in rocks and kinetics and dynamics of crystallization. I. Theory, Contrib. Mineral. Petrol. 99 (1988) 277–291. [37] M.M. Morrissey, Long-period seismicity at Redoubt Volcano, Alaska, 1989–1990 related to magma degassing, J. Volcanol. Geotherm. Res. 75 (1997) 321–335. [38] C. Martel, B.C. Schmidt, Decompression experiments as an insight into ascent rates of silicic magmas, Contrib. Mineral. Petrol. 144 (2003) 397–415. [39] N. Thomas, C. Jaupart, S. Vergniolle, On the vesicularity of pumice, J. Geophys. Res. 99 (1994) 15633–15644. [40] R.S.J. Sparks, The dynamics of bubble formation and growth in magmas: a review and new analysis, J. Volcanol. Geotherm. Res. 3 (1978) 1–37. [41] Y. Zhang, A criterion for the fragmentation of bubbly magma based on brittle failure theory, Nature 402 (1999) 648–650. [42] J. Marti, C. Soriano, D.B. Dingwell, Tube pumices as strain markers of the ductile–brittle transition during magma fragmentation, Nature 402 (1999) 650–653. [43] O. Melnik, Fragmenting magma, Nature 397 (1999) 394–395. [44] M.D. Higgins, J. Roberge, Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: evidence for dynamic crystallisation/textural coarsening cycles, J. Petrol. 44 (2003) 1401–1411. [45] K.V. Cashman, S.M. McConnell, Multiple levels of magma storage during the 1980 summer eruptions of Mount St. Helens, WA, Bull. Volcanol. 68 (2005) 57–75.en
dc.description.fulltextreserveden
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.authorPappalardo, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1030.pdf1.29 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

30
checked on Feb 7, 2021

Page view(s) 50

204
checked on Apr 17, 2024

Download(s)

35
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric