Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2191
DC FieldValueLanguage
dc.contributor.authorallVassallo, M.; Dipartimento di Scienze Fisiche, Università Federico II di Napolien
dc.contributor.authorallNisii, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università Federico II di Napolien
dc.contributor.authorallIannaccone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2007-07-03T07:00:44Zen
dc.date.available2007-07-03T07:00:44Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2191en
dc.description.abstractWe present here two methods to obtain reflection images of upper crust seismic reflectors. The techniques are based on migration and waveform coherence analysis of reflected seismic phases recorded in local earthquake seismograms and in active seismic data. The first method is a move-out and stack of reflected seismic phases in local earthquake recordings. The theoretical travel times of reflected/converted phases in a 1D medium for a given interface depth and velocity model are used to align the recordings in time. The locations and origin times of events are initially estimated from the P and S arrival times. Different seismic gathers are obtained for each reflected/converted phase at the interface under consideration, and the best interface depth is chosen as that which maximizes the value of a semblance function computed on moved-out records. This method has been applied to seismic records of microearthquakes that have occurred at the Mt. Vesuvius volcano, and it confirms the reports of an 8- to 10-km-deep seismic discontinuity beneath the volcano that was previously identified as the roof of an extended magmatic sill. The second is a non-linear 2D method for the inversion of reflection travel times aimed at the imaging of a target upper-crust reflector. This method is specifically designed for geophysical investigations in complex geological environments (oil investigations, retrieving of images of volcano structures) where the presence of complex structures makes the standard velocity analysis difficult and degrades the quality of migrated images. Our reflector is represented by nodes of a cubic-spline that are equally spaced at fixed horizontal locations. The method is based on a multiscale approach and uses a global optimization technique (genetic algorithm) that explores the whole of the parameter space, i.e. the interface position nodes. The forward problem (the modelling of reflection travel times) is solved using the finite-difference solver of Podvine & Lecomte (1991) and using an a priori known background velocity model. This non-linear method allows the automated determination of the global minimum (or maximum) without relying on estimates of the gradient of the objective function in the starting model and without making assumptions about the nature of the objective function itself. We have used two types of objective functions. The first is a least-squares L2 norm, defined as the sum of the squared differences between the observed and the calculated travel times. The second is based on coherence measures (semblance). The main advantage of using coherence measures is that they do not require travel-time picking to assess the degree of fit to the data model. Thus, the time performance of the whole procedure is improved and the subjectivity of the human operators in the picking procedure is removed. The methods are tested on synthetic models and have been applied to a subset of data that was collected during the active seismic experiments performed in September 2001 in the gulfs of Naples and Pozzuoli in the framework of what is known as the SERAPIS project.en
dc.format.extent1339356 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofIn “Geophysical Exploration of the Campi Flegrei (Southern Italy) caldera’ interiors: Data, Methods and Results”,en
dc.subjectNONEen
dc.titleMorphology and depth of reflectors from 2D non-linear inversion of seismic dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber157-178en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.relation.referencesAmand P., Virieux J. (1995). Non linear inversion of synthetic seismic reflection data by simulated annealing. 65th Ann. Internat. Mtg: Soc. Expl. Geophy. Expanded Abstracts, 612-5. Auger E., Gasparini P., Virieux J., Zollo A. (2001). Imaging of a mid-crust high to low seismic discontinuity beneath Mt. Vesuvius. Science, 204, 1510-2. Al-Yahya K. (1989). Velocity analysis by iterative profile migration. Geophysics, 54, 718-29. Balch R. S., Hartse H. E., Sanford A., Lin K. (1997). A new map of the geographic extent of the Socorro mid-crustal magma body. Bull. Soc. Seism. Am., 87, 174-82. Bernard M.-L., Zamora M. (2000). Mechanical properties of volcanic rocks and their relations to transport properties. EOS, Trans. Am. Geophys. U., 81, Fall Meet. Suppl., Abstract V71A-33. Boschetti F., Dentith M. C., List R. D. (1996). Inversion of seismic refraction data using genetic algorithms. Geophysics, 61, 1715-27. Coutant O. (1989). Programme de simulation numerique AXITRA. Res. Report LGIT, Grenoble. Gasparini P., Tomoves Working Group (1998). Looking inside Mount Vesuvius. EOS, Trans. Am. Geophys. U., 79, 229-32. Goldberg X. (1989). Genetic Algoritm in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co., pp. 432. Improta L., Zollo A., Herrero A., Frattini R., Virieux J., Dell’Aversana P. (2002). Seismic imaging of complex structures by nonlinear traveltime inversion of dense wide-angle data: application to a thrust belt. Geophys. J. Int., 151, 264-8. Iyer H. M. (1992). Seismological detection and delineation of magma chambers:Present status with emphasis on the Western USA, in Volcanic Seismology, edited by P. Gasparini, R. Scarpa, K. Aki, Springer-Verlag, pp. 299-338. Iyer H. M., Evans J. R., Dawson P. B., Stauber D. A., Achauer U. (1990). Differences in magma storage in different volcanic environments as revealed by seismic tomography: silicic volcanic centers and subduction-related volcanoes, in Magma transport and storage edited by M.P. Ryan, Wiley, pp. 293-316. James D., Clarke T., Meyer R. (1987). A study of seismic reflection imaging using microearthquake sources, Tectonoph., 140, 65-79. Lomax A., Zollo A., Capuano P., Virieux J. (2001). Precise, absoute earthquake location under Somma-Vesuvius volcano using a new 3D velocity model. Geophys. J. Int., 146, 313-31. Lomax A., Virieux J., Volantand P., Berge C. (2000). Probabilistic earthquake location in 3D and layered models: Introduction to a Metropolis-Gibbs method and comparison with linear locations, in Advances in seismic event location, edited by C.H. Thurber, N. Rabinowitz, Kluwer, Amsterdam, pp. 101-134. Matsumoto S., Hasegawa A. (1996). Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc. J. Geoph. Res., 101, 3067-83. Naess O. E., Bruland L. (1985). Stacking methods other than simle summation, in Developments in Geophysical Methods, 6, 189-223, edited by A.A. Fitch, Elsevier Applied Science Publishers, London. Neidell N. S., Taner M. S. (1971). Semblance and other coherency measurements for multichannel data. Geophysics, 36, 482-97. Nisii V., Zollo A., Iannaccone G. (2003). Depth of a mid-crustal discontinuity beneath Mt Vesuvius from the stacking of reflected and converted waves on local earthquake records. Bull. Soc. Seism. Am., 94(5), 1842-9. Podvin P., Lecomte I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int., 105, 271-84. Ryan M. P. (1994). Neutral-Buoyancy Controlled Magma Transport and Storage in Midocean Ridge Magma Reservoirs and Their Sheeted-Dike Complex: A Summary of Basic Relationships. in Magmatic Systems, vol. 2, edited by M.P. Ryan, Academic Press, London, pp. 97-138. Rinehart E., Sanford A. R. (1981). Upper crustal structure of the Rio Grande Rift near Socorro, New Mexico, from inversion of microearthquake S-wave reflections. Bull. Soc. Seism. Am., 71, 437-50. Toldi J. L. (1989). Velocity analysis without picking. Geophysics, 34, 191-9. Sambridge M., Drijkoningen G. (1992). Genetic algorithms in seismic waveform inversion. Geophys. J. Int., 109, 323-42. Sanders C. O. (1984). Location and configuration of magma bodies beneath Long Valley, California, determined from anomalous earthquake signals. J. Geophys. Res., 89, 8287- 302. Sanford A. R., Alptekinand O., Toppozada T. R. (1973). Use of reflection phases on microearthquake seismograms to map an unusual discontinuity beneath the Rio Grande Rift. Bull. Seism. Soc. Am., 63, 2021-34. Sheriff R. E., Geldart L. P. (1982). Exploration Seismology. Cambridge University Press, New York. Stroujkova A. F., Malin P. E. (2000). A magma mass beneath Casa Diablo? Further evidence from reflected seismic waves. Bull. Seism. Soc. Am., 90, 500-11. Yilmaz O. (1987). Seismic Data Processing, in Investigations in Geophysics, edited by B. Nictzel, Vol. 2, Society of Exploration Geophysicists, Tulsa, Oklahoma. Yilmaz O., Chambers R. (1984). Migration velocity analisis by wavefield extrapolation. Geophys., 49, 1664-74. Zollo A., Gasparini P., Virieux J., Le Meur H., De Natale G., Biella G., Boschi E., Capuano P., de Franco R., Dell’Aversana P., De Matteis R., Guerra I., Iannaccone G., Mirabile L., Vilardo G. (1996). Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science, 274, 592-4. Zollo A., D’Auria L., De Matteis R., Herrero A., Virieux J., Gasparini P. (2002). Bayesian estimation of 2D P-velocity models from active seismic arrival time data: Imaging of the shallow structure of Mt. Vesuvius (Southern Italy). Geophys. J. Int., 151, 556-82. Zollo A., Marzocchi W., Capuano P., Lomax A., Iannaccone G. (2002). Space and time behaviour of seismic activity al Mt. Vesuvius volcano, Southern Italy. Bull. Seism. Soc. Am., 92(2), 625-40, doi: 10.1785/0120000287.en
dc.description.fulltextopenen
dc.contributor.authorVassallo, M.en
dc.contributor.authorNisii, V.en
dc.contributor.authorZollo, A.en
dc.contributor.authorIannaccone, G.en
dc.contributor.departmentDipartimento di Scienze Fisiche, Università Federico II di Napolien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università Federico II di Napolien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8552-6965-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0002-1323-9016-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
1074.pdf1.31 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

217
checked on Apr 17, 2024

Download(s) 50

177
checked on Apr 17, 2024

Google ScholarTM

Check