Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2185
DC FieldValueLanguage
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, I-00143 Rome, Italyen
dc.contributor.authorallKarner, D.; 2Department of Geology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94985, U.S.A.en
dc.contributor.authorallMarra, F.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, I-00143 Rome, Italyen
dc.contributor.authorallRenne, P.; 3Berkeley Geochronology Center, 2455 Ridged Road, Berkeley, CA 94720, U.S.A. and Department of Earth anden
dc.contributor.authorallRoberts, A.; 4National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14en
dc.contributor.authorallWeaver, R.; 4National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14en
dc.date.accessioned2007-06-21T09:57:05Zen
dc.date.available2007-06-21T09:57:05Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2185en
dc.description.abstractBuried sedimentary aggradational sections deposited between 800 ka and 600 ka in the Tiber River coastal alluvial plain have been studied using borecores from around Rome. 40Ar/39Ar ages on sanidine and/or leucite from intercalated tephra layers and paleomagnetic investigation of clay sections provide geochronological constraints on the timing of aggradation of two of these alluvial sections, and demonstrate that they were deposited in response to eustatic sea level rise caused by glacial terminations IX and VII. 40Ar/39Ar age data indicate ages of 802 ± 8 ka and 649 ± 3 ka for glacial terminations IX, and VII, respectively, providing a rare test, beyond the range of U-series dating for corals and speleothems (~500 ka), of the astronomically calibrated timescale developed for oxygen isotope records from deep sea cores.en
dc.format.extent320400 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.subjectGlacial terminationen
dc.subjectpaleomagnetismen
dc.titleRadiometric age constraints for glacial terminations IX and VIIen
dc.typemanuscripten
dc.description.statusSubmitteden
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.identifier.doidoi:10.1016/j.epsl.2007.01.014en
dc.relation.references[1] D.B. Karner, P.R. Renne, 40Ar/39Ar geochronology of Roman province tephra in the Tiber River Valley: age calibration of Middle Pleistocene sea-level changes, Geol. Soc. Am. Bull. 110 (1998) 740-747. [2] D.B. Karner, F. Marra, Correlation of fluviodeltaic aggradational sections with glacial climate history: a revision of the classical Pleistocene stratigraphy of Rome, Geol. Soc. Am. Bull. 110 (1998) 748-758. [3] F. Marra, F. Florindo, D.B. Karner, Paleomagnetism and geochronology of early Middle Pleistocene depositional sequences near Rome: comparison with the deep sea δ18O climate record, Earth Planet. Sci. Lett. 159 (1998) 147-164. [4] D.B. Karner, F. Marra, F. Florindo, E. Boschi, Pulsed uplift estimated from terrace elevations in the coast of Rome: evidence for a new phase of volcanic activity? Earth Planet. Sci. Lett. 188 (2001a) 135-148. [5] F. Marra, C. Rosa, Stratigrafia e assetto geologico dell’area romana, in “La Geologia di Roma. Il Centro Storico”, Mem. Descr. della Carta Geol. d’It. 50 (1995) 49-118. [6] F. Florindo, F. Marra, A revision for the Middle Pleistocene continental deposits of Rome (Central Italy): paleomagnetic data, Ann. Geofis. 38 (1995) 177-188. [7] S. Milli, Depositional setting and high-frequency sequence stratigraphy of the middleupper Pleistocene and Holocene deposits of the Roman basin. Geol. Rom., 33 (1997) 99- 136. [8] G. Giordano, A. Esposito, D. De Rita, M. Fabbri, I. Mazzini, A. Trigari, C. Rosa, R. Funiciello, The sedimentation along the Roman coast between middle and upper Pleistocene: the interplay of eustatism, tectonics and volcanism - new data and review, Il Quaternario, 16 (2003) 121-129. [9] F. Marra, M.G. Carboni, L. De Bella, C. Faccenna, R. Funiciello, C. Rosa, Il substrato Plio-Pleistocenico dell’area Romana, Boll. Soc. Geol. Ital. 114 (1995) 195-214. 23 [10] B.S. Singer, M.S. Pringle, Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from 40Ar/39Ar incremental heating analyses of lavas, Earth Planet. Sci. Lett. 139 (1996) 47-61. [11] P.R. Renne, C.C. Swisher, A.L. Deino, D.B. Karner, T.L. Owens, and D.J. DePaolo, Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem. Geol. 145 (1998) 117-152. [12] D.B. Karner, F. Marra, P. Renne, The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome, J. Volcanol. Geotherm. Res. 107 (2001b) 185-219. [13] N. Tetley, I. McDougall, H.R. Heydegger, Thermal neutron interferences in the 40Ar/39Ar dating technique, J. Geophys. Res. 85 (1980) 7201-7205. [14] P.R. Renne, K. Deckart, M. Ernesto, G. Féraud, E.M. Piccirillo, Age of the Ponta Grossa dike swarm (Brazil) and implications for Paraná flood volcanism, Earth Planet. Sci. Lett. 144 (1996) 199-211. [15] J.L. Kirschvink, The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J.R. Astron. Soc. 62 (1980) 699-718. [16] A.P. Roberts, Magnetic characteristics of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett. 134 (1995) 227-236. [17] M.J. Dekkers, Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size, Phys. Earth Planet. Inter. 57 (1989) 266-283. [18] I.F. Snowball, Gyroremanent magnetization (GRM) and the magnetic properties of greigite bearing clays in southern Sweden, Geophys. J. Int. 129 (1997) 624-636. [19] L. Sagnotti, A. Winkler, Rock magnetism and paleomagnetism of greigite-bearing mudstones in the Italian peninsula, Earth Planet. Sci. Lett. 165 (1999) 67-90. 24 [20] A.P. Roberts, C.R. Pike, K.L. Verosub, FORC diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res. 105 (2000) 28,461-28,475. [21] R. Raiswell, Pyrite texture, isotopic composition and the availability of iron, Am. J. Sci. 282 (1982) 1244-1263. [22] A.P. Roberts, R. Weaver, Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett. 231 (2005) 263-277. [23] F. Florindo, L. Sagnotti, Paleomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int. 123 (1995) 340-354. [24] W.T. Jiang, C.S. Horng, A.P. Roberts, D.R. Peacor, Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite, Earth Planet. Sci. Lett. 193 (2001) 1-12. [25] H. Oda, M. Torii, Sea-level change and remagnetization of continental shelf sediments off New Jersey (ODP Leg 174A): magnetite and greigite diagenesis, Geophys. J. Int. 156 (2004) 443-458. [26] C.J. Rowan, A.P. Roberts, Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett. 241 (2006) 119-137. [27] D.B. Karner, J. Levine, B.P. Medeiros, R.A. Muller, Constructing a stacked benthic δ18O record, Paleoceanography, 17 (2002) 10.1029/2001pa000667. [28] V. Conato, D. Esu, A. Malatesta and F. Zarlenga, New data on the Pleistocene of Rome, Quaternaria 22 (1980) 131-176. [29] F. Bozzano, A. Andreucci, M. Gaeta, R. Salucci, A geological model of the buried Tiber River valley beneath the historical centre of Rome, Bull. Ang. Geol. Env. 59 (2000) 1-21. [30] G. Belluomini, P. Iuzzolini, L. Manfra, R. Mortari, M. Zalaffi, Evoluzione recente del delta del Tevere, Geologica Romana 25 (1986) 213-234. 25 [31] K. Lambeck, F. Antonioli, A. Purcell, S. Silenzi, Sea-level change along the Italian coast for the past 10.000 yr, Quaternary Science Reviews 23 (2004) 1567-1598. [32] E. Bard, B. Hamelin, R. Fairbanks, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature 346 (1990) 456-458. [33] E. Bard, B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, F. Rougerie, Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature 382 (1996) 241-244. [34] A.J. Ammerman, J. Miller, S. Ramsay, The mid-Holocene environment of the Velabrum in Rome, Società Preistoria Protostoria Friuli-Venezia Giulia, Trieste, Quaderno 8 (2000) 9- 20. [35] F.C. Bassinot, L.D. Labeyrie, E. Vincent, X. Quidelleur, N.J. Shackleton, Y. Lancelot, The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett. 126 (1994) 91-108. [36] I.J. Winograd, T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J. Szabo, P.T. Kolesar, K.M. Revesz, Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada, Science 258 (1992) 255-260. [37] K.R. Ludwig, K. R. Simmons, B. J. Szabo, I.J. Winograd, J.M. Landwehr, A.C., Riggs, R.J. Hoffman, Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein, Science 258 (1992) 284-287. [38] D. B. Karner, F. Marra, 40Ar/39Ar dating of Glacial Termination V and the duration of Marine Isotopic Stage 11: in: Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Geophysical Monograph 137 (2003) pp. 61-66, American Geophysical Union, Washington, D.C. [39] W.H. Berger, T. Bickert, H. Schmidt, T. Wefer, Quaternary oxygen isotope record of pelagic foraminifers; Site 806, Ontong Java Plateau: Proc. ODP., Sci. Res. 130 (1992) 381- 395. 26 [40] W.H. Berger, T. Bickert, G. Wefer, M.I. Yasuda, Brunhes-Matuyama boundary; 790 k.y. date consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch template, Geophys. Res. Lett. 22 (1995) 1525-1528.en
dc.description.fulltextopenen
dc.contributor.authorFlorindo, F.en
dc.contributor.authorKarner, D.en
dc.contributor.authorMarra, F.en
dc.contributor.authorRenne, P.en
dc.contributor.authorRoberts, A.en
dc.contributor.authorWeaver, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, I-00143 Rome, Italyen
dc.contributor.department2Department of Geology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94985, U.S.A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, I-00143 Rome, Italyen
dc.contributor.department3Berkeley Geochronology Center, 2455 Ridged Road, Berkeley, CA 94720, U.S.A. and Department of Earth anden
dc.contributor.department4National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14en
dc.contributor.department4National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14en
item.openairetypemanuscript-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptDepartment of Geology, Sonoma State University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptBerkeley Geochronology Center, Berkeley, CA, U.S.A.-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.dept4National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.orcid0000-0002-4881-9563-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Manuscripts
Files in This Item:
File Description SizeFormat
1218.pdf312.89 kBAdobe PDFView/Open
Show simple item record

Page view(s)

152
checked on Apr 17, 2024

Download(s) 50

275
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric